Measure (Lectures 5, 6, 7, 8 and 9)

2.1. Set functions

(2.1) Let X be any countably infinite set and let

$$\mathcal{C} = \{\{x\} \mid x \in X\}.$$

Show that the algebra generated by \mathcal{C} is

 $\mathcal{F}(\mathcal{C}) := \{ A \subseteq X \mid A \text{ or } A^c \text{ is finite} \}.$

Let $\mu : \mathcal{F}(\mathcal{C}) \longrightarrow [0,\infty)$ be defined by

$$\mu(A) := \begin{cases} 0 & \text{if } A \text{ is finite,} \\ 1 & \text{if } A^c \text{is finite.} \end{cases}$$

Show that μ is finitely additive but not countably additive. If X is an uncountable set, show that μ is also countably additive.

(2.2) Let $X = \mathbb{N}$, the set of natural numbers. For every finite set $A \subseteq X$, let #A denote the number of elements in A. Define for $A \subseteq X$,

$$\mu_n(A) := \frac{\#\{m : 1 \le m \le n, m \in A\}}{n}$$

Show that μ_n is countably additive for every n on $\mathcal{P}(X)$. In a sense, μ_n is the proportion of integers between 1 to n which are in A. Let

$$\mathcal{C} = \{ A \subseteq X \mid \lim_{n \to \infty} \mu_n(A) \text{ exists} \}.$$

Show that C is closed under taking complements, finite disjoint unions and proper differences.

(2.3) Let $\mu : \tilde{\mathcal{I}} \cap (0,1] \longrightarrow [0,\infty]$ be defined by

$$\mu(a,b] := \left\{ \begin{array}{ll} b-a & \text{if } a \neq 0, 0 < a < b \leq 1, \\ +\infty & \text{otherwise.} \end{array} \right.$$

(Recall that $\tilde{\mathcal{I}} \cap (0,1]$ is the class of all left-open right-closed intervals in (0,1].)

Show that μ is finitely additive. Is μ countably additive also?

(2.4) Let \mathcal{A} be an algebra of subsets of a set X.

- (i) Let μ_1, μ_2 be measures on \mathcal{A} , and let α and β be nonnegative real numbers. Show that $\alpha \mu_1 + \beta \mu_2$ is also a measure on \mathcal{A} .
- (ii) For any two measures μ_1, μ_2 on \mathcal{A} , we say

$$\mu_1 \leq \mu_2$$
 if $\mu_1(E) \leq \mu_2(E), \forall E \in \mathcal{A}.$

Let $\{\mu_n\}_{n\geq 1}$ be a sequence of measures on \mathcal{A} such that

$$\mu_n \le \mu_{n+1}, \ \forall \ n \ge 1$$

Define $\forall E \in \mathcal{A}$,

$$\mu(E) := \lim_{n \to \infty} \mu_n(E).$$

Show that μ is also a measure on \mathcal{A} and $\forall E \in \mathcal{B}$,

$$\mu(E) = \sup \{ \mu_n(E) \mid n \ge 1 \}.$$

(2.5) Let X be a compact topological space and \mathcal{A} be the collection of all those subsets of X which are both open and closed. Show that \mathcal{A} is an algebra of subsets of X. Further, every finitely additive set function on \mathcal{A} is also countably additive.

Optional Exercises

- (2.6) Let X be a nonempty set.
 - (a) Let $\mu : \mathcal{P}(X) \longrightarrow [0, \infty)$ be a finitely additive set function such that $\mu(A) = 0$ or 1 for every $A \in \mathcal{P}(X)$. Let

$$\mathcal{U} = \{ A \in \mathcal{P}(X) \mid \mu(A) = 1 \}.$$

Show that \mathcal{U} has the following properties:

- (i) $\emptyset \notin \mathcal{U}$.
- (ii) If $A \in X$ and $B \supseteq A$, then $B \in \mathcal{U}$.
- (iii) If $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$.
- (iv) For every $A \in \mathcal{P}(X)$, either $A \in \mathcal{U}$ or $A^c \in \mathcal{U}$.
- (Any $\mathcal{U} \subseteq \mathcal{P}(X)$ satisfying (i) to (iv) is called an **ultrafilter** in X.)
- (b) Let \mathcal{U} be any ultrafilter in X. Define $\mu : \mathcal{P}(X) \longrightarrow [0, \infty)$ by

$$\mu(A) := \begin{cases} 1 & \text{if } A \in \mathcal{U}, \\ 0 & \text{if } A \notin \mathcal{U}. \end{cases}$$

Show that μ is finitely additive.

2.2. Countably additive set functions on intervals

- (2.7) Let F(x) = [x], the integral part of $x, x \in \mathbb{R}$. Describe the set function μ_F induced by F on the class $\tilde{\mathcal{I}}$ of all left-open right-closed intervals.
- (2.8) Let $F : \mathbb{R} \to \mathbb{R}$ be a distribution function and $\alpha \in \mathbb{R}$. Show that $F_1 := F + \alpha$ is also a distribution function and $\mu_F = \mu_{F_1}$. Is the converse true?
- (2.9) (i) Let \mathcal{C} be a collection of subsets of a set X and $\mu : \mathcal{C} \to [0, \infty]$ be a set function. If μ is a measure on \mathcal{C} , show that μ is finitely additive. Is μ monotone? Countably subadditive?

(ii) If \mathcal{C} be a semi-algebra, then μ is countably subadditive iff $\forall A \in \mathcal{C}$ with $A \subseteq \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{C}$ implies

$$\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i).$$

2.3. Set functions on algebras

(2.10) Let \mathcal{A} be an algebra of subsets of a set X and $\mu : \mathcal{A} \to [0, \infty]$ be a finitely additive set function.

(i) Show that in general, for a decreasing sequence $\{A_k\}_{k\geq 1}$ in \mathcal{A} with $\bigcap_{k=1}^{\infty} A_k = A \in \mathcal{A}$ need not imply that $\mu(A) = \lim_{n \to \infty} \mu(A_n)$, even if μ is countably additive.

- (ii) If $\mu(X) < +\infty$, show that the following statements are equivalent:
- (a) $\lim_{k \to \infty} \mu(A_k) = 0$, whenever $\{A_k\}_{k \ge 1}$ is a sequence in \mathcal{A} with $A_k \supseteq A_{k+1} \quad \forall k$, and $\bigcap_{k=1}^{\infty} A_k = \emptyset$.
- (b) μ is countably additive.
- (2.11) Let \mathcal{A} be a σ -algebra and $\mu : \mathcal{A} \to [0, \infty]$ be a measure. For any sequence $\{E_n\}_{n\geq 1}$ in \mathcal{A} , show that
 - (i) $\mu(\liminf_{n\to\infty} E_n) \leq \liminf_{n\to\infty} \mu(E_n).$
 - (ii) $\mu(\limsup_{n \to \infty} E_n) \ge \limsup_{n \to \infty} \mu(E_n).$

(Hint: For a sequence $\{E_n\}_{n\geq 1}$ of subsets of a set X,

$$\liminf_{n \to \infty} E_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k \subseteq \limsup_{n \to \infty} E_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

Optional Exercise

- (2.12) Let \mathcal{A} be a **semi- algebra** of subsets of a set X and $\mu : \mathcal{A} \to [0, \infty]$ be a finitely additive set function. Show that the following statements are equivalent:
 - (a) $\lim_{k\to\infty} \mu(A_k) = 0$, whenever $\{A_k\}_{k\geq 1}$ is an increasing sequence in \mathcal{A} with $\bigcup_{k=1}^{\infty} A_k = A \in \mathcal{A}$.
 - (b) μ is countably additive.
 - (Hint: Extend μ to the algebra generated by \mathcal{A} .)

2.4. Uniqueness problem for measures

- (2.13) Let \mathcal{A} be an algebra of subsets of a set X. Let μ_1 and μ_2 be σ -finite measures on a σ -algebra $\mathcal{S}(\mathcal{A})$ such that $\mu_1(A) = \mu_2(A) \ \forall A \in \mathcal{A}$. Then, $\mu_1(A) = \mu_2(A) \ \forall A \in \mathcal{S}(\mathcal{A})$.
- (2.14) Show that a measure μ defined on an algebra \mathcal{A} of subsets of a set X is finite if and only if $\mu(X) < +\infty$.