Measure and

integration on product
spaces

(Lectures 24, 25, 26, 27, 28, 29, 30, 31 and 32)

6.1. Product measure spaces

(6.1) Let (X, \mathcal{A}) be a measurable space. Let $\alpha, \beta \in \mathbb{R}$ and $E \in \mathcal{A} \otimes \mathcal{B}_{\mathbb{R}}$. Show that $\{(x, t) \in X \times \mathbb{R} \mid(x, \alpha t+\beta) \in E\} \in \mathcal{A} \otimes \mathcal{B}_{\mathbb{R}}$.
(Hint: Use the σ-algebra technique.)
(6.2) Let $E \in \mathcal{B}_{\mathbb{R}}$. Show that

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x+y \in E\right\}
$$

and

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x-y \in E\right\}
$$

are elements of $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$.
(6.3) Let X and Y be nonempty sets and \mathcal{C}, \mathcal{D} be nonempty families of subsets of X and Y, respectively, as in proposition 7.1.5. Is it true that $\mathcal{S}(\mathcal{C} \times \mathcal{D})=\mathcal{S}(\mathcal{C}) \otimes \mathcal{S}(\mathcal{D})$ in general? Check in the case when $\mathcal{C}=\{\emptyset\}$ and \mathcal{D} is a σ-algebra of subsets of Y containing at least four elements.
(6.4) Let $\mathcal{B}_{\mathbb{R}^{2}}$ denote the σ-algebra of Borel subsets of \mathbb{R}^{2}, i.e., the σ-algebra generated by the open subsets of \mathbb{R}^{2}. Show that

$$
\mathcal{B}_{\mathbb{R}^{2}}=\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}
$$

(Hint: Use proposition 7.1.5.)

6.2. Product of measure spaces

(6.5) For $E, F, E_{i} \in \mathcal{A} \otimes \mathcal{B}$ and $i \in I$, any indexing set, the following hold $\forall x \in X, y \in Y$:
(i) $\left(\bigcup_{i \in I} E_{i}\right)_{x}=\bigcup_{i \in I}\left(E_{i}\right)_{x}$ and $\left(\bigcup_{i \in I} E_{i}\right)^{y}=\bigcup_{i \in I}\left(E_{i}\right)^{y}$.
(ii) $\left(\bigcap_{i \in I} E_{i}\right)_{x}=\bigcap_{i \in I}\left(E_{i}\right)_{x}$ and $\left(\bigcap_{i \in I} E_{i}\right)^{y}=\bigcap_{i \in I}\left(E_{i}\right)^{y}$.
(iii) $(E \backslash F)_{x}=E_{x} \backslash F_{x}$ and $(E \backslash F)^{y}=E^{y} \backslash F^{y}$.
(iv) If $E \subseteq F$, then $E_{x} \subseteq F_{x}$ and $E^{y} \subseteq F^{y}$.
(6.6) Let $E \in \mathcal{A} \otimes \mathcal{B}$ be such that $\mu\left(E^{y}\right)=0$ for a.e. $(\nu) y \in Y$. Show that $\mu\left(E_{x}\right)=0$ for a.e. $(\mu) x \in X$. What can you say about $(\mu \times \nu)(E)$?

6.3. Integration on product spaces: Fubini's theorems

(6.7) Let $f: X \times Y \longrightarrow \mathbb{R}$ be $\mathcal{A} \otimes \mathcal{B}$-measurable. Show that the following statements are equivalent:
(i) $f \in L_{1}(\mu \times \nu):=L_{1}(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$.
(ii) $\int_{Y}\left(\int_{X}|f(x, y)| d \mu(x)\right) d \nu(y)<+\infty$.
(iii) $\int_{X}\left(\int_{Y}|f(x, y)| d \nu(y)\right) d \mu(x)<+\infty$.
(6.8) Let $X=Y=[0,1], \mathcal{A}=\mathcal{B}=\mathcal{B}_{[0,1]}$, and let $\mu=\nu$ be the Lebesgue measure on $[0,1]$. Let

$$
f(x, y):=\left\{\begin{array}{cl}
\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if } \quad(x, y) \neq(0,0) \\
0 & \text { if } \quad x=y \text { otherwise }
\end{array}\right.
$$

Show that

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d \mu(x)\right) d \nu(y)=-\int_{0}^{1}\left(\int_{0}^{1}(x, y) d \nu(y)\right) d \mu(x)=-\pi / 4
$$

This does not contradict, give reasons to justify.
(6.9) Let $X=Y=[-1,1], \mathcal{A}=\mathcal{B}=\mathcal{B}_{[-1,1]}$, and let $\mu=\nu$ be the Lebesgue measure on $[-1,1]$. Let

$$
f(x, y):=\left\{\begin{array}{cl}
\frac{x y}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that

$$
\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d \nu(y)\right) d \mu(x)=0=\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d \mu(x)\right) d \nu(y)
$$

Can you conclude that

$$
\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d \nu(y)\right) d \mu(x)=\int_{X \times Y} f(x, y) d(\mu \times \nu)(x, y) ?
$$

(6.10) Let $f \in L_{1}(X, \mathcal{A}, \mu)$ and $g \in L_{1}(Y, \mathcal{B}, \nu)$. Let

$$
\phi(x, y):=f(x) g(y), x \in X \text { and } y \in Y
$$

Show that $\phi \in L_{1}(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ and

$$
\int_{X \times Y} \phi(x, y) d(\mu \times \nu)=\left(\int_{X} f d \mu\right)\left(\int_{Y} g d \nu\right) .
$$

(6.11) Let $f \in L_{1}(0, a)$ and let

$$
g(x):=\int_{x}^{a}(f(t) / t) d \lambda(t), 0<x \leq a
$$

Show that $g \in L_{1}(0, a)$, and compute $\int_{0}^{a} g(x) d \lambda(x)$.
(6.12) Let (X, \mathcal{A}, μ), and (X, \mathcal{B}, ν) be as in exercise 6,8 . Define, for $x, y \in$ $[0,1]$,

$$
f(x, y):=\left\{\begin{array}{cl}
1 & \text { if } x \text { is rational } \\
2 y & \text { if } y \text { is irrational. }
\end{array}\right.
$$

Compute

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d \nu(y)\right) d \mu(x) \text { and } \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d \mu(x)\right) d \nu(y)
$$

Is f in $L_{1}(\mu \times \nu)$?
(6.13) Let (X, \mathcal{A}, μ) be as in example 7.3.7. Let $Y=[1, \infty), \mathcal{B}=\mathcal{L}_{\mathbb{R}} \cap[1, \infty)$, and let ν be the Lebesgue measure restricted to $[1, \infty)$. Define, for $(x, y) \in$ $X \times Y$,

$$
f(x, y):=e^{-x y}-2 e^{-2 x y}
$$

Show that $f \notin L_{1}(\mu \times \nu)$.
(6.14) Let X be a topological space and let \mathcal{B}_{X} be the σ-algebra of Borel subsets of X. A function $f: X \longrightarrow \mathbb{R}$ is said to be Borel measurable if $f^{-1}(E) \in \mathcal{B}_{X} \quad \forall E \in \mathcal{B}_{\mathbb{R}}$. Prove the following:
(i) f is Borel measurable iff $f^{-1}(U) \in \mathcal{B}_{X}$ for every open set $U \subseteq \mathbb{R}$.
(Hint: Use the ' σ-algebra technique'.)
(ii) Let $f: X \longrightarrow \mathbb{R}$ be continuous. Show that f is Borel measurable.
(iii) Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of Borel measurable functions on X such that $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists $\quad \forall x \in X$. Show that f also is Borel measurable.
(iv) Consider \mathbb{R}^{2} with the product topology and let f, g be Borel measurable functions on \mathbb{R}. Show that the function ϕ on \mathbb{R}^{2} defined by

$$
\phi(x, y):=f(x) g(y), \quad x \in X, y \in Y
$$

is Borel measurable.

Optional Exercises

(6.15) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be Borel measurable. Show that for $x \in X$ fixed, $y \longmapsto f(x, y)$ is a Borel measurable function on \mathbb{R}. Is the function $x \longmapsto$ $f(x, y)$, for $y \in Y$ fixed, also Borel measurable?
(6.16) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be such that for $x \in X$ fixed, $y \longmapsto f(x, y)$ is Borel measurable and for $y \in Y$ fixed, $x \longmapsto f(x, y)$ is continuous.
(i) For every $n \geq 1$ and $x, y \in \mathbb{R}$, define

$$
f_{n}(x, y):=(i-n x) f((i-1) / n, y)+(n x-i+1) f(i / n, y),
$$

whenever $x \in[(i-1) / n, i / n), i \in \mathbb{Z}$. Show that each $f_{n}: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is continuous and hence is Borel measurable.
(ii) Show that $f_{n}(x, y) \rightarrow f(x, y)$ as $n \rightarrow \infty$ for every $(x, y) \in \mathbb{R}^{2}$, and hence f is Borel measurable.
(6.17) Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces and let $f: X \times Y \longrightarrow \mathbb{R}$ be a nonnegative $\mathcal{A} \otimes \mathcal{B}$-measurable function. Let μ be a σ-finite measure on (Y, \mathcal{B}). For any $E \in \mathcal{B}$ and $x \in X$, let

$$
\eta(x, E):=\int_{E} f(x, y) d \mu(y) .
$$

Show that $\eta(x, E)$ has the following properties:
(i) For every fixed $E \in \mathcal{B}, \longmapsto \eta(x, E)$ is an \mathcal{A}-measurable function.
(ii) For every fixed $x \in X, E \longmapsto \eta(x, E)$ is a measure on (Y, \mathcal{B}).

A function $\eta: X \times \mathcal{B} \longrightarrow[0, \infty)$ having properties (i) and (ii) above is called a transition measure.

6.4. Lebesgue measure on \mathbb{R}^{2} and its properties

(6.18) Show that for $f \in L_{1}\left(\mathbb{R}^{2}, \mathcal{L}_{\mathbb{R}^{2}}, \lambda_{\mathbb{R}^{2}}\right), \boldsymbol{x} \in \mathbb{R}^{2}$, the function $\boldsymbol{y} \longmapsto f(\boldsymbol{x}+$ $\boldsymbol{y})$ is integrable and

$$
\int f(\boldsymbol{x}+\boldsymbol{y}) d \lambda_{\mathbb{R}^{2}}(\boldsymbol{x})=\int f(\boldsymbol{x}) d \lambda_{\mathbb{R}^{2}}(\boldsymbol{x}) .
$$

(Hint: Use exercise 5.3.27 and theorem 7.4.3.)
(6.19) Let $E \in \mathcal{L}_{\mathbb{R}^{2}}$ and $\boldsymbol{x}=(x, y) \in \mathbb{R}^{2}$. Let

$$
\boldsymbol{x} E:=\{(x t, y r) \mid(t, r) \in E\} .
$$

Prove the following:
(i) $\boldsymbol{x} E \in \mathcal{L}_{\mathbb{R}^{2}}$ for every $\boldsymbol{x} \in \mathbb{R}, E \in \mathcal{L}_{\mathbb{R}^{2}}$, and $\lambda_{\mathbb{R}^{2}}(\boldsymbol{x} E)=|x y| \lambda_{\mathbb{R}^{2}}(E)$.
(ii) For every nonnegative Borel measurable function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$,

$$
\int f(\boldsymbol{x} \boldsymbol{t}) d \lambda_{\mathbb{R}^{2}}(\boldsymbol{t})=|x y| \int f(\boldsymbol{t}) d \lambda_{\mathbb{R}^{2}}(\boldsymbol{t})
$$

where for $\boldsymbol{x}=(x, y)$ and $\boldsymbol{t}=(s, r), \boldsymbol{x t}:=(x s, y r)$.
(iii) Let $\lambda_{\mathbb{R}^{2}}\left\{\boldsymbol{x} \in \mathbb{R}^{2}| | \boldsymbol{x} \mid \leq 1\right\}=: \pi$. Then

$$
\lambda_{\mathbb{R}^{2}}\left\{\boldsymbol{x} \in \mathbb{R}^{2}| | \boldsymbol{x} \mid<1\right\}=\pi \text { and } \lambda_{\mathbb{R}^{2}}\left\{\boldsymbol{x} \in \mathbb{R}^{2}| | \boldsymbol{x} \mid<r\right\}=\pi r^{2} .
$$

(iv) Let E be a vector subspace of \mathbb{R}^{2}. Then $\lambda_{\mathbb{R}^{2}}(E)=0$ if E has dimension less than 2 .
(6.20) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a linear map.
(i) If $N \subseteq \mathbb{R}^{2}$ is such that $\lambda_{\mathbb{R}^{2}}^{*}(N)=0$, show that $\lambda_{\mathbb{R}^{2}}^{*}(T(N))=0$.
(ii) Use (i) above and proposition 7.4.1(iii) to complete the proof of theorem 7.4.6 for sets $E \in \mathcal{L}_{\mathbb{R}^{2}}$.
(6.21) Consider the vectors $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathbb{R}^{2}$ and let $P:=\left\{\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}, \alpha_{1} b_{1}+\alpha_{2} b_{2}\right) \in \mathbb{R}^{2} \mid \alpha_{1}, \alpha_{2} \in \mathbb{R}, 0 \leq \alpha_{i} \leq 1\right\}$,
called the parallelogram determined by these vectors. Show that

$$
\lambda_{\mathbb{R}^{2}}(P)=\left|a_{1} b_{2}-a_{2} b_{1}\right| .
$$

