Integration
 (Lectures 17, 18, 19, 20 and 21)

5.1. Integral of nonnegative simple functions

(5.1) Show that for $s \in \mathbb{L}_{0}^{+}, \int s(x) d \mu(x)$ is well-defined by proving the following: let

$$
s=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}=\sum_{j=1}^{m} b_{j} \chi_{B_{j}}
$$

where $\left\{A_{1}, \ldots, A_{n}\right\}$ and $\left\{B_{1}, \ldots, B_{m}\right\}$ are partitions of X by elements of \mathcal{S}, then
(ii)

$$
s=\sum_{i=1}^{n} a_{i} \sum_{j=1}^{m} \chi_{A_{i} \cap B_{j}}=\sum_{j=1}^{m} b_{j} \sum_{i=1}^{n} \chi_{A_{i} \cap B_{j}} .
$$

(ii)

$$
\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)=\sum_{j=1}^{m} b_{j} \mu\left(B_{j}\right)
$$

(iii) $\int s(x) d \mu(x)$ is independent of the representation of the function $s(x)=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$.
(5.2) Let $s_{1}, s_{2} \in \mathbb{L}_{0}^{+}$. Prove the following:
(i) If $s_{1} \geq s_{2}$, then $\int s_{1} d \mu \geq \int s_{2} d \mu$.
(ii) Let $\forall x \in X$,
$\left(s_{1} \vee s_{2}\right)(x):=\max \left\{s_{1}(x), s_{2}(x)\right\}$ and $\left(s_{1} \wedge s_{2}\right)(x):=\min \left\{s_{1}(x), s_{2}(x)\right\}$.
Then $s_{1} \wedge s_{2}$ and $s_{1} \vee s_{2} \in \mathbb{L}_{0}^{+}$with

$$
\int\left(s_{1} \wedge s_{2}\right) d \mu \leq \int s_{i} d \mu \leq \int\left(s_{1} \vee s_{2}\right) d \mu, i=1,2
$$

(5.3) For $s_{1}, s_{2} \in \mathbb{L}_{0}^{+}$compute $\left\{x \mid s_{1}(x) \geq s_{2}(x)\right\}$ and show that it belongs to \mathcal{S}. Can you say that the sets
$\left\{x \in X \mid s_{1}(x)>s_{2}(x)\right\},\left\{x \in X \mid s_{1}(x) \leq s_{2}(x)\right\},\left\{x \in X \mid s_{1}(x)=s_{2}(x)\right\}$
are also elements of \mathcal{S} ?
(5.4) Let $s_{1}, s_{2} \in \mathbb{L}_{0}^{+}$be real valued and $s_{1} \geq s_{2}$. Let $\phi=s_{1}-s_{2}$. Show that $\phi \in \mathbb{L}_{0}^{+}$. Can you say that

$$
\int \phi d \mu=\int s_{1} d \mu-\int s_{2} d \mu ?
$$

(5.5) Let $\left\{s_{n}\right\}_{n \geq 1}$ and $\left\{s_{n}^{\prime}\right\}_{n \geq 1}$ be sequences in \mathbb{L}_{0}^{+}such that for each $x \in X$, both $\left\{s_{n}(x)\right\}_{n \geq 1}$ and $\left\{s_{n}^{\prime}(x)\right\}_{n \geq 1}$ are increasing and

$$
\lim _{n \rightarrow \infty} s_{n}(x)=\lim _{n \rightarrow \infty} s_{n}^{\prime}(x)
$$

Show that

$$
\lim _{n \rightarrow \infty} \int s_{n} d \mu=\lim _{n \rightarrow \infty} \int s_{n}^{\prime} d \mu
$$

(Hint: Consider sequence $\left\{s_{n} \wedge s_{m}^{\prime}\right\}_{n}$ for all fixed m to deduce that $\int s_{m}^{\prime} d \mu \leq \lim _{n \rightarrow \infty} \int s_{n} d \mu$.)

5.2. Integral of nonnegative measurable functions

(5.6) Let $f \in \mathbb{L}^{+}$.
(i) If $\int f d \mu=0$, how that $f(x)=0$, a.e. (x).
(ii) If $\int f d \mu<\infty$, Show that $f(x)<\infty$, a.e. (x).
(5.7) Let $f \in \mathbb{L}^{+}$and let $\left\{s_{n}\right\}_{n \geq 1}$ be in \mathbb{L}_{0}^{+}and such that $\left\{s_{n}(x)\right\}_{n \geq 1}$ is decreasing and $\forall x \in X, \lim _{n \rightarrow \infty} s_{n}(x)=f(x)$. Can you conclude that

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int s_{n} d \mu ?
$$

(5.8) Let $s \in \mathbb{L}_{0}^{+}$
(i) Show that $\int s d \mu$ is same whether we teart it as an element of \mathbb{L}_{0}^{+}or of \mathbb{L}^{+}.
(ii) Show that $f \in \mathbb{L}^{+}$iff there exists a sequence $\left\{s_{n}\right\}_{n \geq 1}$ in \mathbb{L}^{+}such that

$$
f(x)=\lim _{n \rightarrow \infty} s_{n}(x), \forall x \in X
$$

(iii) For $f \in \mathbb{L}^{+}$,

$$
\int f d \mu=\sup \left\{\int s d \mu \mid 0 \leq s(x) \leq f(x) \text { for a.e. } x(\mu), s \in \mathbb{L}_{0}^{+}\right\}
$$

(5.9) Let $\left\{f_{n}\right\}_{n \geq 1}$ be an increasing sequence of functions in \mathbb{L}^{+}such that $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists for a.e. $x(\mu)$. Show that $f \in \mathbb{L}^{+}$and

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

where $f(x)$ is defined as an arbitrary constant for all those x for which $\lim _{n \rightarrow \infty} f_{n}(x)$ does not converge.
(5.10) Let $f, f_{n} \in \mathbb{L}^{+}, n=1,2, \ldots$, be such that $0 \leq f_{n} \leq f$. If $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$, can you deduce that

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu ?
$$

(5.11) Let $f \in \mathbb{L}$. For $x \in X$ and $n \geq 1$, define

$$
f_{n}(x):=\left\{\begin{array}{ccc}
f(x) & \text { if } \quad|f(x)| \leq n \\
n & \text { if } \quad f(x)>n \\
-n & \text { if } & f(x)<-n
\end{array}\right.
$$

Prove the following:
(i) $f_{n} \in \mathbb{L}$ and $\left|f_{n}(x)\right| \leq n \quad \forall n$ and $\forall x \in X$.
(ii) $\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \forall x \in X$.
(iii) $\left|f_{n}(x)\right|:=\min \left\{\left|f_{n}(x)\right|, n\right\}:=(|f| \wedge n)(x)$ is an element of \mathbb{L}^{+}and

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}\right| d \mu=\int|f| d \mu
$$

Note:

For $f \in \mathbb{L}$, the sequence $\left\{f_{n}\right\}_{n \geq 1}$ as defined in exercise 4.27 is called the truncation sequence of f. The truncation sequence is useful in proving results about functions in the class \mathbb{L}.
(5.12) Let $f \in \mathbb{L}$ and

$$
\nu(E):=\mu\{x \in X \mid f(x) \in E\}, E \in \mathcal{B}_{\mathbb{R}}
$$

Show that ν is a measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$. Further, if $g: \mathbb{R} \longrightarrow \mathbb{R}$ is any nonnegative $\mathcal{B}_{\mathbb{R}}$-measurable function, i.e., $g^{-1}(A) \in \mathcal{B}_{\mathbb{R}} \quad \forall A \in \mathcal{B}_{\mathbb{R}}$, then $g \circ f \in \mathbb{L}$ and

$$
\int g d \nu=\int(g \circ f) d \mu
$$

The measure ν is usually denoted by μf^{-1} and is called the distribution of the measurable function f.
(5.13) Let (X, \mathcal{S}, μ) be a measure space and let $(X, \overline{\mathcal{S}}, \bar{\mu})$ be its completion. Let $\bar{f}: X \longrightarrow \mathbb{R}$ be an $\overline{\mathcal{S}}$-measurable function. Show that there exists an \mathcal{S}-measurable function $f: X \longrightarrow \mathbb{R}$ such that $\bar{f}(x)=f(x)$ for a.e. $x(\mu)$.
(5.14) Let (X, \mathcal{S}, μ) be a complete measure space and $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of \mathcal{S}-measurable functions on X. Let f be a function on X such that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for a.e. $x(\mu)$. Show that f is \mathcal{S}-measurable.

5.3. Integrable functions

(5.15) For $f \in \mathbb{L}$, prove the following:
(i) $f \in L_{1}(\mu)$ iff $|f| \in L_{1}(\mu)$. Further, in either case

$$
\left|\int f d \mu\right| \leq \int|f| d \mu
$$

(ii) If $f \in L_{1}(\mu)$, then $|f(x)|<+\infty$ for a.e. $x(\mu)$.
(5.16) Let $\mu(X)<+\infty$ and let $f \in \mathbb{L}$ be such that $|f(x)| \leq M$ for a.e. $x(\mu)$ and for some M. Show that $f \in L_{1}(\mu)$.
(5.17) Let $f \in L_{1}(\mu)$ and $E \in \mathcal{S}$. Show that $\chi_{E} f \in L_{1}(\mu)$, where

$$
\int_{E} f d \mu:=\int \chi_{E} f d \mu
$$

Further, if $E, F \in \mathcal{S}$ are disjoint sets, show that

$$
\int_{E \cup F} f d \mu=\int_{E} f d \mu+\int_{F} f d \mu .
$$

(5.18) Let $f \in L_{1}(\mu)$ and $E_{i} \in \mathcal{S}, i \geq 1$, be such that $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$. Show that the series $\sum_{i=1}^{\infty} \int_{E_{i}} f d \mu$ is absolutely convergent, and if $E:=\bigcup_{i=1}^{\infty} E_{i}$, then

$$
\sum_{i=1}^{\infty} \int_{E_{i}} f d \mu=\int_{E} f d \mu
$$

(5.19) (i) For every $\epsilon>0$ and $f \in L_{1}(\mu)$, show that

$$
\mu\left\{x \in X||f(x)| \geq \epsilon\} \leq \frac{1}{\epsilon} \int|f| d \mu<\infty .\right.
$$

This is called Chebyshev's inequality.
(ii) Let $f \in L_{1}(\mu)$, and let there exist $M>0$ such that

$$
\left|\frac{1}{\mu(E)} \int_{E} f d \mu\right| \leq M
$$

for every $E \in \mathcal{S}$ with $0<\mu(E)<\infty$. Show that $|f(x)| \leq M$ for a.e. $x(\mu)$.
(5.20) Let λ be the Lebesgue measure on \mathbb{R}, and let $f \in L_{1}(\mathbb{R}, \mathcal{L}, \lambda)$ be such that

$$
\int_{(-\infty, x)} f(t) d \lambda(t)=0, \quad \forall x \in \mathbb{R}
$$

Show that $f(x)=0$ for a.e. $(\lambda) x \in \mathbb{R}$.
(5.21) Let (X, \mathcal{S}, μ) be a finite measure space and $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence in $L_{1}(\mu)$ such that $f_{n} \rightarrow f$ uniformly. Show that $f \in L_{1}(\mu)$ and

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0
$$

Can the condition of $\mu(X)<+\infty$ be dropped?
(5.22) Let $\left\{f_{n}\right\}_{n \geq 1}$ and $\left\{g_{n}\right\}_{n \geq 1}$ be sequences of measurable functions such that $\left|f_{n}\right| \leq g_{n} \quad \forall n$. Let f and g be measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for a.e. $x(\mu)$ and $\lim _{n \rightarrow \infty} g_{n}(x)=g(x)$ for a.e. $x(\mu)$. If

$$
\lim _{n \rightarrow \infty} \int g_{n} d \mu=\int g d \mu<+\infty
$$

show that

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

(Hint: Apply Fatou's lemma to $\left(g_{n}-f_{n}\right)$ and $\left(g_{n}+f_{n}\right)$.)
(5.23) Let $\left\{f_{n}\right\}_{n \geq 0}$ be a sequence in $L_{1}(X, \mathcal{S}, \mu)$. Show that $\left\{\int\left|f_{n}\right| d \mu\right\}_{n \geq 1}$ converges to $\int\left|f_{0}\right| d \mu$ iff $\left\{\int\left|f_{n}-f_{0}\right| d \mu\right\}_{n \geq 1}$ converges to zero.
(5.24) Let (X, \mathcal{S}) be a measurable space and $f: X \longrightarrow \mathbb{R}$ be \mathcal{S}-measurable. Prove the following:
(i) $\mathcal{S}_{0}:=\left\{f^{-1}(E) \mid E \in \mathcal{B}_{\mathbb{R}}\right\}$ is the σ-algebra of subsets of X, and $\mathcal{S}_{0} \subseteq \mathcal{S}$.
(ii) If $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ is Borel measurable, i.e., $\phi^{-1}(E) \in \mathcal{B}_{\mathbb{R}} \forall E \in \mathcal{B}_{\mathbb{R}}$, then $\phi \circ f$ is an \mathcal{S}_{0}-measurable function on X.
(iii) If $\psi: X \longrightarrow \mathbb{R}$ is any \mathcal{S}_{0}-measurable function, then there exists a Borel measurable function $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\psi=\phi \circ f$.
(Hint: Use the simple function technique and note that if ψ is a simple \mathcal{S}_{0}-measurable function, then $\psi=\sum_{i=1}^{n} a_{n} \chi_{f^{-1}\left(E_{i}\right)}$ for some positive integer $n, a_{i} \in \mathbb{R}$ for each i, and $E_{i} \in \mathcal{B}_{\mathbb{R}}$, then $\psi=\left(\sum_{i=1}^{n} a_{i} \chi_{E_{i}}\right) \circ f$.
(5.25) Let μ, ν be as in proposition 4.4.9. Let \mathcal{S}_{ν} denote the σ-algebra of all ν^{*}-measurable subsets of X. Prove the following:
(i) $\mathcal{S} \subseteq \mathcal{S}_{\nu}$.
(ii) There exist examples such that \mathcal{S} is a proper subclass of \mathcal{S}_{ν}. Show that $\mathcal{S}=\mathcal{S}_{\nu}$ if $\mu^{*}\{x \in X \mid f(x)=0\}=0$.

5.4. The Lebesgue integral and its relation with the Riemann integral

(5.26) Let $f:[0,1] \longrightarrow[0, \infty)$ be Riemann integrable on $[\epsilon, 1]$ for all $\epsilon>0$.

Show that $f \in L_{1}[0,1]$ iff $\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} f(x) d x$ exists, and in that case

$$
\int f(x) d \lambda(x)=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} f(x) d x
$$

(5.27) Let $f(x)=1 / x^{p}$ if $0<x \leq 1$, and $f(0)=0$. Find necessary and sufficient condition on p such that $f \in L_{1}[0,1]$. Compute $\int_{0}^{1} f(x) d \lambda(x)$ in that case.
(Hint: Use exercise 4.46.)
(5.28) (Mean value property):Let $f:[a, b] \longrightarrow \mathbb{R}$ be a continuous function and let $E \subseteq[a, b], E \in \mathcal{L}$, be such that $\lambda(E)>0$. Show that there exists a real number α such that

$$
\int_{E} f(x) \lambda(x)=\alpha \lambda(E)
$$

(5.29) Let $f \in L_{1}(\mathbb{R})$, and let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a measurable function such that $\alpha \leq g(x) \leq \beta$ for a.e. $x(\lambda)$. Show that $f g \in L_{1}(\mathbb{R})$ and there exists $\gamma \in[\alpha, \beta]$ such that

$$
\int|f| g d \lambda=\gamma \int|f| d \lambda
$$

(5.30) Let $f \in L_{1}(\mathbb{R}, \mathcal{L}, \lambda)$ and let $a \in \mathbb{R}$ be fixed. Define

$$
F(x):= \begin{cases}\int_{[a, x]} f(t) d \lambda(t) & \text { for } x \geq a \\ \int_{[x, a]} f(t) d \lambda(t) & \text { for } x \geq a\end{cases}
$$

Show that F is continuous.
(Hint: Without loss of generality take $f \geq 0$ and show that F is continuous from the left and right. In fact, F is actually uniformly continuous.)

