Integration (Lectures 17, 18, 19, 20 and 21)

5.1. Integral of nonnegative simple functions

(5.1) Show that for $s \in \mathbb{L}_0^+$, $\int s(x) d\mu(x)$ is well-defined by proving the following: let

$$s = \sum_{i=1}^{n} a_i \chi_{A_i} = \sum_{j=1}^{m} b_j \chi_{B_j},$$

where $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_m\}$ are partitions of X by elements of \mathcal{S} , then

(ii)

$$s = \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \chi_{A_i \cap B_j} = \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \chi_{A_i \cap B_j}.$$

(ii)

$$\sum_{i=1}^{n} a_{i}\mu(A_{i}) = \sum_{j=1}^{m} b_{j}\mu(B_{j}).$$

- (iii) $\int s(x)d\mu(x)$ is independent of the representation of the function $s(x) = \sum_{i=1}^{n} a_i \chi_{A_i}.$
- (5.2) Let $s_1, s_2 \in \mathbb{L}_0^+$. Prove the following: (i) If $s_1 \ge s_2$, then $\int s_1 d\mu \ge \int s_2 d\mu$.

17

(ii) Let $\forall x \in X$, $(s_1 \lor s_2)(x) := \max\{s_1(x), s_2(x)\}$ and $(s_1 \land s_2)(x) := \min\{s_1(x), s_2(x)\}$. Then $s_1 \land s_2$ and $s_1 \lor s_2 \in \mathbb{L}_0^+$ with

$$\int (s_1 \wedge s_2) d\mu \leq \int s_i d\mu \leq \int (s_1 \vee s_2) d\mu, \ i = 1, 2.$$

(5.3) For $s_1, s_2 \in \mathbb{L}_0^+$ compute $\{x \mid s_1(x) \geq s_2(x)\}$ and show that it belongs to \mathcal{S} . Can you say that the sets

$$\{x \in X \mid s_1(x) > s_2(x)\}, \{x \in X \mid s_1(x) \le s_2(x)\}, \{x \in X \mid s_1(x) = s_2(x)\}$$

are also elements of \mathcal{S} ?

(5.4) Let $s_1, s_2 \in \mathbb{L}_0^+$ be real valued and $s_1 \geq s_2$. Let $\phi = s_1 - s_2$. Show that $\phi \in \mathbb{L}_0^+$. Can you say that

$$\int \phi d\mu = \int s_1 d\mu - \int s_2 d\mu?$$

(5.5) Let $\{s_n\}_{n\geq 1}$ and $\{s'_n\}_{n\geq 1}$ be sequences in \mathbb{L}^+_0 such that for each $x \in X$, both $\{s_n(x)\}_{n\geq 1}$ and $\{s'_n(x)\}_{n\geq 1}$ are increasing and

$$\lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} s'_n(x).$$

Show that

$$\lim_{n \to \infty} \int s_n d\mu = \lim_{n \to \infty} \int s'_n d\mu.$$

(Hint: Consider sequence $\{s_n \wedge s'_m\}_n$ for all fixed m to deduce that $\int s'_m d\mu \leq \lim_{n\to\infty} \int s_n d\mu$.)

5.2. Integral of nonnegative measurable functions

- (5.6) Let $f \in \mathbb{L}^+$. (i) If $\int f d\mu = 0$, how that f(x) = 0, a.e.(x). (ii) If $\int f d\mu < \infty$, Show that $f(x) < \infty$, a.e.(x).
- (5.7) Let $f \in \mathbb{L}^+$ and let $\{s_n\}_{n\geq 1}$ be in \mathbb{L}_0^+ and such that $\{s_n(x)\}_{n\geq 1}$ is decreasing and $\forall x \in X$, $\lim_{n \to \infty} s_n(x) = f(x)$. Can you conclude that

$$\int f d\mu = \lim_{n \to \infty} \int s_n d\mu?$$

(5.8) Let $s \in \mathbb{L}_0^+$

(i) Show that $\int s d\mu$ is same whether we teart it as an element of \mathbb{L}_0^+ or of \mathbb{L}^+ .

(ii) Show that $f \in \mathbb{L}^+$ iff there exists a sequence $\{s_n\}_{n \ge 1}$ in \mathbb{L}^+ such that f(x) $\lim_{n \to \infty} c_n(x) \quad \forall x \in Y$

$$f(x) = \lim_{n \to \infty} s_n(x), \ \forall x \in X.$$

(iii) For $f \in \mathbb{L}^+$, $\int f d\mu = \sup \left\{ \int s d\mu \middle| 0 \le s(x) \le f(x) \text{ for a.e. } x(\mu), s \in \mathbb{L}_0^+ \right\}.$

(5.9) Let $\{f_n\}_{n\geq 1}$ be an increasing sequence of functions in \mathbb{L}^+ such that $f(x) := \lim_{n \to \infty} \overline{f_n(x)}$ exists for a.e. $x(\mu)$. Show that $f \in \mathbb{L}^+$ and

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

where f(x) is defined as an arbitrary constant for all those x for which $\lim_{n \to \infty} f_n(x) \text{ does not converge.}$

(5.10) Let $f, f_n \in \mathbb{L}^+, n = 1, 2, \ldots$, be such that $0 \le f_n \le f$. If $\lim_{n \to \infty} f_n(x) = f(x)$, can you deduce that

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu?$$

(5.11) Let $f \in \mathbb{L}$. For $x \in X$ and $n \ge 1$, define

$$f_n(x) := \begin{cases} f(x) & \text{if } |f(x)| \le n, \\ n & \text{if } f(x) > n, \\ -n & \text{if } f(x) < -n. \end{cases}$$

Prove the following:

- (i) $f_n \in \mathbb{L}$ and $|f_n(x)| \le n \quad \forall n \text{ and } \forall x \in X.$ (ii) $\lim_{n \to \infty} f_n(x) = f(x) \quad \forall x \in X.$
- (iii) $|f_n(x)| := \min\{|f_n(x)|, n\} := (|f| \land n)(x)$ is an element of \mathbb{L}^+ and

$$\lim_{n \to \infty} \int |f_n| d\mu = \int |f| d\mu.$$

Note:

For $f \in \mathbb{L}$, the sequence $\{f_n\}_{n \geq 1}$ as defined in exercise 4.27 is called the truncation sequence of f. The truncation sequence is useful in proving results about functions in the class \mathbb{L} .

(5.12) Let $f \in \mathbb{L}$ and

$$\nu(E) := \mu\{x \in X \mid f(x) \in E\}, \ E \in \mathcal{B}_{\mathbb{R}}.$$

Show that ν is a measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Further, if $g : \mathbb{R} \longrightarrow \mathbb{R}$ is any nonnegative $\mathcal{B}_{\mathbb{R}}$ -measurable function, i.e., $g^{-1}(A) \in \mathcal{B}_{\mathbb{R}} \quad \forall A \in \mathcal{B}_{\mathbb{R}}$, then $g \circ f \in \mathbb{L}$ and

$$\int g \, d\nu = \int \, (g \circ f) \, d\mu.$$

The measure ν is usually denoted by μf^{-1} and is called the **distribution** of the measurable function f.

- (5.13) Let (X, \mathcal{S}, μ) be a measure space and let $(X, \overline{\mathcal{S}}, \overline{\mu})$ be its completion. Let $\overline{f} : X \longrightarrow \mathbb{R}$ be an $\overline{\mathcal{S}}$ -measurable function. Show that there exists an \mathcal{S} -measurable function $f : X \longrightarrow \mathbb{R}$ such that $\overline{f}(x) = f(x)$ for a.e. $x(\mu)$.
- (5.14) Let (X, \mathcal{S}, μ) be a complete measure space and $\{f_n\}_{n\geq 1}$ be a sequence of \mathcal{S} -measurable functions on X. Let f be a function on X such that $f(x) = \lim_{n \to \infty} f_n(x)$ for a.e. $x(\mu)$. Show that f is \mathcal{S} -measurable.

5.3. Integrable functions

- (5.15) For $f \in \mathbb{L}$, prove the following:
 - (i) $f \in L_1(\mu)$ iff $|f| \in L_1(\mu)$. Further, in either case

$$\left|\int f d\mu\right| \leq \int |f| d\mu.$$

(ii) If $f \in L_1(\mu)$, then $|f(x)| < +\infty$ for a.e. $x(\mu)$.

- (5.16) Let $\mu(X) < +\infty$ and let $f \in \mathbb{L}$ be such that $|f(x)| \leq M$ for a.e. $x(\mu)$ and for some M. Show that $f \in L_1(\mu)$.
- (5.17) Let $f \in L_1(\mu)$ and $E \in S$. Show that $\chi_E f \in L_1(\mu)$, where

$$\int_E f d\mu \, := \, \int \chi_E f d\mu$$

Further, if $E, F \in \mathcal{S}$ are disjoint sets, show that

$$\int_{E\cup F} fd\mu = \int_E fd\mu + \int_F fd\mu.$$

(5.18) Let $f \in L_1(\mu)$ and $E_i \in S, i \geq 1$, be such that $E_i \cap E_j = \emptyset$ for $i \neq j$. Show that the series $\sum_{i=1}^{\infty} \int_{E_i} f d\mu$ is absolutely convergent, and if $E := \bigcup_{i=1}^{\infty} E_i$, then

$$\sum_{i=1}^{\infty} \int_{E_i} f d\mu = \int_E f d\mu.$$

(5.19) (i) For every $\epsilon > 0$ and $f \in L_1(\mu)$, show that

$$\mu \left\{ x \in X \mid |f(x)| \ge \epsilon \right\} \le \frac{1}{\epsilon} \int |f| d\mu < \infty.$$

This is called **Chebyshev's inequality**.

(ii) Let $f \in L_1(\mu)$, and let there exist M > 0 such that

$$\left|\frac{1}{\mu(E)}\int_{E}fd\mu\right| \leq M$$

for every $E \in \mathcal{S}$ with $0 < \mu(E) < \infty$. Show that $|f(x)| \leq M$ for a.e. $x(\mu)$.

(5.20) Let λ be the Lebesgue measure on \mathbb{R} , and let $f \in L_1(\mathbb{R}, \mathcal{L}, \lambda)$ be such that

$$\int_{(-\infty,x)} f(t) d\lambda(t) = 0, \quad \forall \ x \in \mathbb{R}.$$

Show that f(x) = 0 for a.e. $(\lambda)x \in \mathbb{R}$.

(5.21) Let (X, \mathcal{S}, μ) be a finite measure space and $\{f_n\}_{n\geq 1}$ be a sequence in $L_1(\mu)$ such that $f_n \to f$ uniformly. Show that $f \in L_1(\mu)$ and

$$\lim_{n \to \infty} \int |f_n - f| \, d\mu \, = \, 0.$$

Can the condition of $\mu(X) < +\infty$ be dropped?

(5.22) Let $\{f_n\}_{n\geq 1}$ and $\{g_n\}_{n\geq 1}$ be sequences of measurable functions such that $|f_n| \leq g_n \quad \forall \ n$. Let f and g be measurable functions such that $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. $x(\mu)$ and $\lim_{n\to\infty} g_n(x) = g(x)$ for a.e. $x(\mu)$. If

$$\lim_{n \to \infty} \int g_n \, d\mu = \int g \, d\mu \, < \, +\infty,$$

show that

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f d\mu.$$

(Hint: Apply Fatou's lemma to $(g_n - f_n)$ and $(g_n + f_n)$.)

- (5.23) Let $\{f_n\}_{n\geq 0}$ be a sequence in $L_1(X, \mathcal{S}, \mu)$. Show that $\{\int |f_n|d\mu\}_{n\geq 1}$ converges to $\int |f_0|d\mu$ iff $\{\int |f_n f_0|d\mu\}_{n\geq 1}$ converges to zero.
- (5.24) Let (X, \mathcal{S}) be a measurable space and $f : X \longrightarrow \mathbb{R}$ be \mathcal{S} -measurable. Prove the following:
 - (i) $\mathcal{S}_0 := \{ f^{-1}(E) \mid E \in \mathcal{B}_{\mathbb{R}} \}$ is the σ -algebra of subsets of X, and $\mathcal{S}_0 \subseteq \mathcal{S}$.
 - (ii) If $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ is Borel measurable, i.e., $\phi^{-1}(E) \in \mathcal{B}_{\mathbb{R}} \forall E \in \mathcal{B}_{\mathbb{R}}$, then $\phi \circ f$ is an \mathcal{S}_0 -measurable function on X.
 - (iii) If $\psi : X \longrightarrow \mathbb{R}$ is any \mathcal{S}_0 -measurable function, then there exists a Borel measurable function $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ such that $\psi = \phi \circ f$. (Hint: Use the simple function technique and note that if ψ is a simple

 S_0 -measurable function, then $\psi = \sum_{i=1}^n a_n \chi_{f^{-1}(E_i)}$ for some positive

integer
$$n, a_i \in \mathbb{R}$$
 for each i , and $E_i \in \mathcal{B}_{\mathbb{R}}$, then $\psi = (\sum_{i=1}^n a_i \chi_{E_i}) \circ f$.

- (5.25) Let μ, ν be as in proposition 4.4.9. Let S_{ν} denote the σ -algebra of all ν^* -measurable subsets of X. Prove the following:
 - (i) $\mathcal{S} \subseteq \mathcal{S}_{\nu}$.
 - (ii) There exist examples such that S is a proper subclass of S_{ν} . Show that $S = S_{\nu}$ if $\mu^* \{ x \in X \mid f(x) = 0 \} = 0$.

5. Integration

(5.26) Let $f : [0,1] \longrightarrow [0,\infty)$ be Riemann integrable on $[\epsilon,1]$ for all $\epsilon > 0$. Show that $f \in L_1[0,1]$ iff $\lim_{\epsilon \to 0} \int_{\epsilon}^{1} f(x) dx$ exists, and in that case

$$\int f(x)d\lambda(x) = \lim_{\epsilon \to 0} \int_{\epsilon}^{1} f(x)dx.$$

(5.27) Let $f(x) = 1/x^p$ if $0 < x \le 1$, and f(0) = 0. Find necessary and sufficient condition on p such that $f \in L_1[0,1]$. Compute $\int_0^1 f(x) d\lambda(x)$ in that case.

(Hint: Use exercise 4.46.)

(5.28) (Mean value property):Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function and let $E \subseteq [a, b], E \in \mathcal{L}$, be such that $\lambda(E) > 0$. Show that there exists a real number α such that

$$\int_E f(x)\lambda(x) = \alpha\lambda(E).$$

(5.29) Let $f \in L_1(\mathbb{R})$, and let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be a measurable function such that $\alpha \leq g(x) \leq \beta$ for a.e. $x(\lambda)$. Show that $fg \in L_1(\mathbb{R})$ and there exists $\gamma \in [\alpha, \beta]$ such that

$$\int |f|gd\lambda \,=\, \gamma \int |f|d\lambda$$

(5.30) Let $f \in L_1(\mathbb{R}, \mathcal{L}, \lambda)$ and let $a \in \mathbb{R}$ be fixed. Define

$$F(x) := \begin{cases} \int_{[a,x]} f(t) d\lambda(t) & \text{for } x \ge a, \\ \\ \int_{[x,a]} f(t) d\lambda(t) & \text{for } x \ge a. \end{cases}$$

Show that F is continuous.

(Hint: Without loss of generality take $f \ge 0$ and show that F is continuous from the left and right. In fact, F is actually uniformly continuous.)