Measurable functions (Lectures 14, 15 and 16)

4.1. \mathbb{L}_0 : Simple measurable functions

In this chapter, all the functions are defined on a measurable space (X, \mathcal{S}) .

- (4.1) Let $A, B \in S$. Express the functions $|\chi_A \chi_B|$ and $\chi_A + \chi_B \chi_{A \cap B}$ as indicator functions of sets in S and hence deduce that they belong to \mathbb{L}_0 .
- (4.2) Let $s : X \longrightarrow \mathbb{R}^*$ be any function such that the range of s is a finite set. Show that $s \in \mathbb{L}_0$ iff $s^{-1}{t} \in \mathcal{S}$ for every $t \in \mathbb{R}^*$.
- (4.3) Let $\{A_1, \ldots, A_n\}$ be subsets of X and

$$s = \sum_{i=1}^{n} a_i \chi_{A_i}.$$

Show that $s \in L_0$ iff each $A_i \in \mathcal{S}$.

(4.4) Let $s_1, s_2 \in \mathbb{L}_0$. Prove the following: Let $\forall x \in X$,

 $(s_1 \lor s_2)(x) := \max\{s_1(x), s_2(x)\}$ and $(s_1 \land s_2)(x) := \min\{s_1(x), s_2(x)\}.$

Then $s_1 \wedge s_2$ and $s_1 \vee s_2 \in \mathbb{L}_0$.

- (4.5) Express the functions $\chi_A \wedge \chi_B$ and $\chi_A \vee \chi_B$, for $A, B \in \mathcal{S}$, in terms of the functions χ_A and χ_B .
- (4.6) Let $s_1, s_2 \in \mathbb{L}_0$ be real valued and $s_1 \geq s_2$. Let Show that $s_1 s_2 \in \mathbb{L}_0$.

(4.7) Show that in general \mathbb{L}_0^+ need not be closed under limiting operations.

4.2. \mathbb{L} : Measurable functions

(4.8) Let $f : X \longrightarrow \mathbb{R}^*$ be a nonnegative measurable function. Show that there exist sequences of nonnegative simple functions $\{s_n\}_{n\geq 1}$ and $\{\tilde{s}_n\}_{n\geq 1}$ such that

$$0 \le \dots \le s_n(n) \le s_{n+1}(x) \le \dots \le f(x) \le \dots \le \tilde{s}_{n+1}(x) \le \tilde{s}_n(x) \dotsb$$

and $\lim_{n \to \infty} s_n(x) = f(x) = \lim_{n \to \infty} \tilde{s}_n(x) \quad \forall x \in X.$

- (4.9) Let f and $g: X \longrightarrow \mathbb{R}^*$ be measurable functions, p and $\alpha \in \mathbb{R}$ with p > 1, and let m be any positive integer. Use proposition 4.3.9to prove the following:
 - (i) $f + \alpha$ is a measurable function.
 - (ii) Let β and $\gamma \in \mathbb{R}^*$ be arbitrary. Define for $x \in \mathbb{R}$,

$$f^{m}(x) := \begin{cases} (f(x))^{m} & \text{if } f(x) \in \mathbb{R}, \\ \beta & \text{if } f(x) = +\infty, \\ \gamma & \text{if } f(x) = -\infty. \end{cases}$$

Then f^m is a measurable function.

- (iii) Let $|f|^p$ be defined similarly to f^m , where p is a nonnegative real number. Then $|f|^p$ is a measurable function.
- (iv) Let $\beta, \gamma, \delta \in \mathbb{R}^*$ be arbitrary. Define for $x \in \mathbb{R}$,

$$(1/f)(x) := \begin{cases} 1/f(x) & \text{if} \quad f(x) \notin \{0, +\infty, -\infty\}, \\ \beta & \text{if} \quad f(x) = 0, \\ \gamma & \text{if} \quad f(x) = -\infty, \\ \delta & \text{if} \quad f(x) = +\infty. \end{cases}$$

Then 1/f is a measurable function.

(v) Let $\beta \in \mathbb{R}^*$ be arbitrary and A be as in proposition 4.3.8. Define for $x \in \mathbb{R}$,

$$(fg)(x) := \begin{cases} f(x)g(x) & \text{if } x \notin A, \\ \beta & \text{if } x \in A. \end{cases}$$

Then fg is a measurable function.

- (4.10) Let $f: X \to \mathbb{R}^*$ be S-measurable. Show that |f| is also S-measurable. Give an example to show that the converse need not be true.
- (4.11) Let (X, \mathcal{S}) be a measurable space such that for every function $f : X \longrightarrow \mathbb{R}$, f is \mathcal{S} -measurable iff |f| is \mathcal{S} -measurable. Show that $\mathcal{S} = \mathcal{P}(X)$.
- (4.12) Let $f_n \in \mathbb{L}$, $n = 1, 2, \dots$ Show that the sets

$${x \in X \mid \{f_n(x)\}_n \text{ is convergent}\}}$$

 $\quad \text{and} \quad$

$${x \in X \mid \{f_n(x)\}_{n \ge 1} \text{ is Cauchy}\}}$$

belong to \mathcal{S} .