Measurable functions (Lectures 14, 15 and 16)

4.1. \mathbb{L}_{0} : Simple measurable functions

In this chapter, all the functions are defined on a measurable space (X, \mathcal{S}).
(4.1) Let $A, B \in \mathcal{S}$. Express the functions $\left|\chi_{A}-\chi_{B}\right|$ and $\chi_{A}+\chi_{B}-\chi_{A \cap B}$ as indicator functions of sets in \mathcal{S} and hence deduce that they belong to \mathbb{L}_{0}.
(4.2) Let $s: X \longrightarrow \mathbb{R}^{*}$ be any function such that the range of s is a finite set. Show that $s \in \mathbb{L}_{0}$ iff $s^{-1}\{t\} \in \mathcal{S}$ for every $t \in \mathbb{R}^{*}$.
(4.3) Let $\left\{A_{1}, \ldots, A_{n}\right\}$ be subsets of X and

$$
s=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}
$$

Show that $s \in L_{0}$ iff each $A_{i} \in \mathcal{S}$.
(4.4) Let $s_{1}, s_{2} \in \mathbb{L}_{0}$. Prove the following: Let $\forall x \in X$,
$\left(s_{1} \vee s_{2}\right)(x):=\max \left\{s_{1}(x), s_{2}(x)\right\}$ and $\left(s_{1} \wedge s_{2}\right)(x):=\min \left\{s_{1}(x), s_{2}(x)\right\}$.
Then $s_{1} \wedge s_{2}$ and $s_{1} \vee s_{2} \in \mathbb{L}_{0}$.
(4.5) Express the functions $\chi_{A} \wedge \chi_{B}$ and $\chi_{A} \vee \chi_{B}$, for $A, B \in \mathcal{S}$, in terms of the functions χ_{A} and χ_{B}.
(4.6) Let $s_{1}, s_{2} \in \mathbb{L}_{0}$ be real valued and $s_{1} \geq s_{2}$. Let Show that $s_{1}-s_{2} \in \mathbb{L}_{0}$.
(4.7) Show that in general \mathbb{L}_{0}^{+}need not be closed under limiting operations.

4.2. \mathbb{L} : Measurable functions

(4.8) Let $f: X \longrightarrow \mathbb{R}^{*}$ be a nonnegative measurable function. Show that there exist sequences of nonnegative simple functions $\left\{s_{n}\right\}_{n \geq 1}$ and $\left\{\tilde{s}_{n}\right\}_{n \geq 1}$ such that

$$
0 \leq \cdots \leq s_{n}(n) \leq s_{n+1}(x) \leq \cdots \leq f(x) \leq \cdots \leq \tilde{s}_{n+1}(x) \leq \tilde{s}_{n}(x) \cdots
$$

and $\lim _{n \rightarrow \infty} s_{n}(x)=f(x)=\lim _{n \rightarrow \infty} \tilde{s}_{n}(x) \forall x \in X$.
(4.9) Let f and $g: X \longrightarrow \mathbb{R}^{*}$ be measurable functions, p and $\alpha \in \mathbb{R}$ with $p>1$, and let m be any positive integer. Use proposition 4.3.9to prove the following:
(i) $f+\alpha$ is a measurable function.
(ii) Let β and $\gamma \in \mathbb{R}^{*}$ be arbitrary. Define for $x \in \mathbb{R}$,

$$
f^{m}(x):=\left\{\begin{array}{cl}
(f(x))^{m} & \text { if } f(x)=\mathbb{R} \\
\beta & \text { if } f(x)=+\infty \\
\gamma & \text { if } f(x)=-\infty
\end{array}\right.
$$

Then f^{m} is a measurable function.
(iii) Let $|f|^{p}$ be defined similarly to f^{m}, where p is a nonnegative real number. Then $|f|^{p}$ is a measurable function.
(iv) Let $\beta, \gamma, \delta \in \mathbb{R}^{*}$ be arbitrary. Define for $x \in \mathbb{R}$,

$$
(1 / f)(x):=\left\{\begin{array}{cll}
1 / f(x) & \text { if } & f(x) \notin\{0,+\infty,-\infty\} \\
\beta & \text { if } & f(x)=0, \\
\gamma & \text { if } & f(x)=-\infty \\
\delta & \text { if } & f(x)=+\infty
\end{array}\right.
$$

Then $1 / f$ is a measurable function.
(v) Let $\beta \in \mathbb{R}^{*}$ be arbitrary and A be as in proposition 4.3.8. Define for $x \in \mathbb{R}$,

$$
(f g)(x):=\left\{\begin{array}{cll}
f(x) g(x) & \text { if } \quad & x \notin A \\
\beta & \text { if } & x \in A .
\end{array}\right.
$$

Then $f g$ is a measurable function.
(4.10) Let $f: X \rightarrow \mathbb{R}^{*}$ be \mathcal{S}-measurable. Show that $|f|$ is also \mathcal{S}-measurable. Give an example to show that the converse need not be true.
(4.11) Let (X, \mathcal{S}) be a measurable space such that for every function f : $X \longrightarrow \mathbb{R}, f$ is \mathcal{S}-measurable iff $|f|$ is \mathcal{S}-measurable. Show that $\mathcal{S}=\mathcal{P}(X)$.
(4.12) Let $f_{n} \in \mathbb{L}, n=1,2, \ldots$ Show that the sets

$$
\left\{x \in X \mid\left\{f_{n}(x)\right\}_{n} \text { is convergent }\right\}
$$

and

$$
\left\{x \in X \mid\left\{f_{n}(x)\right\}_{n \geq 1} \text { is Cauchy }\right\}
$$

belong to \mathcal{S}.

