Extension of measures (Lectures 10, 11, 12 and 13)

In these exercises, $\mu : \mathcal{A} :\to [0, +\infty]$ is a measure on the algebra \mathcal{A} .

- (3.1) Show that $\mu^*(E)$ is well-defined.
- (3.2) The set function $\mu^*(E)$ can take the value $+\infty$ for some sets E.
- (3.3) Show that $\mu^*(E)$ can also be defined as

$$\mu^*(E) = \inf\left\{\sum_{i=1}^{\infty} \mu(A_i) \,\middle|\, A_i \in \mathcal{A}, A_i \cap A_j = \emptyset \text{ for } i \neq j \text{ and } \bigcup_{i=1}^{\infty} A_i \supseteq E\right\}.$$

(3.4) Let X be any nonempty set and let \mathcal{A} be any algebra of subsets of X. Let $x_0 \in X$ be fixed. For $A \in \mathcal{A}$, define

$$\mu(A) := \begin{cases} 0 & \text{if } x_0 \notin A, \\ 1 & \text{if } x_0 \in A. \end{cases}$$

Show that μ is countably additive. Let μ^* be the outer measure induced by μ . Show that $\mu^*(A)$ is either 0 or 1 for every $A \subseteq X$, and $\mu^*(A) = 1$ if $x_0 \in A$. Can you conclude that $\mu^*(A) = 1$ implies $x_0 \in A$? Show that this is possible if $\{x_0\} \in \mathcal{A}$.

3.1. Choosing nice sets: Measurable sets

(3.5) Identify the collection of μ^* -measurable sets for μ as in example 3.7.6 in the text book.

(3.6) Let X = [a, b] and let S be the σ -algebra of subsets of X generated by all subintervals of [a, b]. Let μ, ν be finite measures on S such that

$$\mu([a,c]) = \nu([a,c]), \quad \forall \ c \in [a,b].$$

Show that $\mu(E) = \nu(E) \quad \forall E \in \mathcal{S}.$

- (3.7) Let μ_F be the measure on $\mathcal{A}(\mathcal{I})$, the algebra generated by left open right closed intervals. Let μ_F itself denote the unique extension of μ_F to \mathcal{L}_F , the σ -algebra of μ_F^* -measurable sets. Show that
 - (i) $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{L}_{F}$.
 - (ii) $\mu_F(\{x\}) = F(x) \lim_{y \uparrow x} F(y)$. Deduce that the function F is continuous at x iff $\mu_F(\{x\}) = 0$.
 - (iii) Let F be differentiable with bounded derivative. If $A \subseteq \mathbb{R}$ is a Lebesgue null set, then $\mu_F^*(A) = 0$.

The measure μ_F is called the **Lebesgue-Stieltjes measure** induced by the distribution function F.

(3.8) Let $E_1 \subseteq E_2 \subseteq E_3 \subseteq \ldots$ be subsets of X. Then

$$\mu^*\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu^*(E_n).$$

3.2. Completion of a measure space

(3.9) Let $\mathcal{N} := \{E \subseteq X \mid \mu^*(E) = 0\}$. Show that \mathcal{N} is closed under countable unions.

(In fact and

$$\mathcal{S}^* = \mathcal{S}(\mathcal{A}) \cup \mathcal{N} := \{ E \cup N \mid E \in \mathcal{S}(\mathcal{A}), N \in \mathcal{N} \},\$$

where \mathcal{S}^* is the σ -algebra of μ^* -measurable sets. Further, $\forall A \in \mathcal{S}^*$

$$\mu^*(A) = \mu^*(E)$$
, if $A = E \cup N$, with $E \in \mathcal{S}(\mathcal{A})$ and $N \in \mathcal{N}$.

)

- (3.10) Let $E \subseteq X$. A set G is called a measurable cover of E if $E \subset G$ and $\mu^*(G \setminus E) = 0$. If G_1, G_2 be two measurable covers of E, Show that $\mu^*(G_1 \Delta G_2) = 0$.
- (3.11) Let $E \subseteq X$. A set K is called a measurable kernal of E if $E \supset GK$ and $\mu^*(E \setminus K) = 0$. Let K_1, K_2 be two measurable kernels of E. Show that $\mu^*(K_1 \Delta K_2) = 0$.

3.3. The Lebesgue measure

(3.12) Let \mathcal{I}_0 denote the collection of all **open intervals** of \mathbb{R} . For $E \subseteq X$, show that

$$\overset{*}{\lambda}(E) = \inf \left\{ \sum_{i=1}^{\infty} \lambda(I_i) \, \middle| \, I_i \in \mathcal{I}_0 \ \forall i, \text{ for } i \neq j \text{ and } E \subseteq \bigcup_{i=1}^{\infty} I_i \right\}.$$

- (3.13) Let $E \subseteq \mathbb{R}$ and let $\epsilon > 0$ be arbitrary. Show that there exists an open set $U_{\epsilon} \supseteq E$ such that $\lambda(U_{\epsilon}) \leq \overset{*}{\lambda}(E) + \epsilon$. Can you also conclude that $\lambda(U_{\epsilon} \setminus E) \leq \epsilon$?
- (3.14) For $E \subseteq \mathbb{R}$, let

diameter(E) := sup{
$$|x - y| | x, y \in E$$
}.

Show that $\lambda^*(E) \leq \text{diameter}(E)$.

- (3.15) Show that for $E \subseteq \mathbb{R}, \lambda^*(E) = 0$ if and only if for every $\epsilon > 0$, there exist a sequence $\{I_n\}_{n\geq 1}$ of intervals such that $E \subseteq \bigcup_{n=1}^{\infty}$ and $\lambda^*(\bigcup_{n=1}^{\infty} \setminus E) < \epsilon$. Such sets are called **Lebesgue null** sets. Prove the following:
 - (i) Every singleton set $\{x\}, x \in \mathbb{R}$, is a null set. Also every finite set is a null set.
 - (ii) Any countably infinite set $S = \{x_1, x_2, x_3, ...\}$ is a null set.
 - (iii) \mathbb{Q} , the set of rational numbers, is a null subset of \mathbb{R} .
 - (iv) Every subset of a null set is also a null set.
 - (iv) Let $A_1, A_2, \ldots, A_n, \ldots$ be null sets. Then $\bigcup_{n=1}^{\infty} A_n$ is a null set.
 - (v) Let $E \subseteq [a, b]$ be any set which has only a finite number of limit points. Can E be uncountable? Can you say E is a null set?
 - (vi) Let E be a null subset of \mathbb{R} and $x \in \mathbb{R}$. What can you say about the sets $E + x := \{y + x \mid y \in E\}$ and $xE := \{xy \mid y \in E\}$?
 - (vii) Let I be an interval having at least two distinct points. Show that I is not a null set.
 - (viii) If E contains an interval of positive length, show that it is not a null set. Is the converse true, i.e., if $E \subseteq \mathbb{R}$ is not a null set, then does E contain an interval of positive length?
 - (ix) Show that Cantor's ternary set is an uncountable null set.
- (3.16) Let $E \subseteq [0,1]$ be such that $\hat{\lambda}([0,1] \setminus E) = 0$. Show that E is dense in [0,1]
- (3.20) Let $E \subseteq \mathbb{R}$ be such that $\lambda^*(E) = 0$. Show that E has empty interior.
- (3.21) Let $A \in \mathcal{L}$ and $x \in \mathbb{R}$. Using equivalent definition of measurability, show that
 - (i) $A + x \in \mathcal{L}$, where $A + x := \{y + x \mid y \in A\}$.
 - (ii) $-A \in \mathcal{L}$, where $-A := \{-y \mid y \in A\}$.

(3.22) Let $E \in \mathcal{B}_{\mathbb{R}}$. Show that $E + x \in \mathcal{B}_{\mathbb{R}}$ for every $x \in \mathbb{R}$.

(3.23) Let $E \in \mathcal{L}$ and $x \in \mathbb{R}$. Let

 $xE := \{xy \mid y \in E\}$ and $-E := \{-x \mid x \in E\}.$

Show that $-E, xE \in \mathcal{L}$ for every $x \in E$. Compute $\lambda(xE)$ and $\lambda(-E)$ in terms of $\lambda(E)$.

Optional Exercises

(3.24) Let $E \subseteq \mathbb{R}$. Show that the following statements are equivalent:

(i) $E \in \mathcal{L}$.

- (ii) $\overset{*}{\lambda}(I) = \overset{*}{\lambda}(E \cap I) + \overset{*}{\lambda}(E^c \cap I)$ for every interval I. (iii) $\underset{*}{E} \cap [n, n+1) \in \mathcal{L}$ for every $n \in \mathbb{Z}$.
- (iv) $\overset{*}{\lambda}(E \cap [n, n+1)) + \overset{*}{\lambda}(E^c \cap [n, n+1)) = 1$ for every $n \in \mathbb{Z}$.