
Exercises set 3

Extension of measures
(Lectures 10, 11, 12
and 13)

In these exercises, µ : A :→ [0,+∞] is a measure on the algebra A.

(3.1) Show that µ∗(E) is well-defined.

(3.2) The set function µ∗(E) can take the value +∞ for some sets E.

(3.3) Show that µ∗(E) can also be defined as

µ∗(E) = inf

{

∞
∑

i=1

µ(Ai) Ai ∈ A, Ai ∩Aj = ∅ for i 6= j and

∞
⋃

i=1

Ai ⊇ E

}

.

(3.4) Let X be any nonempty set and let A be any algebra of subsets of X.
Let x0 ∈ X be fixed. For A ∈ A, define

µ(A) :=

{

0 if x0 6∈ A,
1 if x0 ∈ A.

Show that µ is countably additive. Let µ∗ be the outer measure induced
by µ. Show that µ∗(A) is either 0 or 1 for every A ⊆ X, and µ∗(A) = 1
if x0 ∈ A. Can you conclude that µ∗(A) = 1 implies x0 ∈ A? Show that
this is possible if {x0} ∈ A.

3.1. Choosing nice sets: Measurable sets

(3.5) Identify the collection of µ∗-measurable sets for µ as in example 3.7.6
in the text book.
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(3.6) Let X = [a, b] and let S be the σ-algebra of subsets of X generated by
all subintervals of [a, b]. Let µ, ν be finite measures on S such that

µ([a, c]) = ν([a, c]), ∀ c ∈ [a, b].

Show that µ(E) = ν(E) ∀ E ∈ S.

(3.7) Let µF be the measure on A(Ĩ), the algebra generated by left open
right closed intervals. Let µF itself denote the unique extension of µF to
LF , the σ-algebra of µ∗F -measurable sets. Show that
(i) BR ⊆ LF .
(ii) µF ({x}) = F (x)− lim

y↑x
F (y). Deduce that the function F is continu-

ous at x iff µF ({x}) = 0.
(iii) Let F be differentiable with bounded derivative. If A ⊆ R is a

Lebesgue null set, then µ∗F (A) = 0.
The measure µF is called the Lebesgue-Stieltjes measure induced by
the distribution function F.

(3.8) Let E1 ⊆ E2 ⊆ E3 ⊆ . . . be subsets of X. Then

µ∗

(

∞
⋃

n=1

En

)

= lim
n→∞

µ∗(En).

3.2. Completion of a measure space

(3.9 ) Let N := {E ⊆ X | µ∗(E) = 0}. Show that N is closed under
countable unions.
( In fact and

S∗ = S(A) ∪N := {E ∪N | E ∈ S(A), N ∈ N},

where S∗ is the σ-algebra of µ∗-measurable sets. Further, ∀ A ∈ S∗

µ∗(A) = µ∗(E), if A = E ∪N, with E ∈ S(A) and N ∈ N .

)

(3.10) Let E ⊆ X. A set G is called a measurable cover of E if E ⊂ G
and µ∗(G \ E) = 0. If G1, G2 be two measurable covers of E, Show that
µ∗(G1∆G2) = 0.

(3.11 ) Let E ⊆ X. A set K is called a measurable kernal of E if E ⊃ GK
and µ∗(E \ K) = 0. Let K1,K2 be two measurable kernels of E. Show
that µ∗(K1∆K2) = 0.
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3.3. The Lebesgue measure

(3.12) Let I0 denote the collection of all open intervals of R. For E ⊆ X,
show that

λ
∗
(E) = inf

{

∞
∑

i=1

λ(Ii) Ii ∈ I0 ∀ i, for i 6= j and E ⊆
∞
⋃

i=1

Ii

}

.

(3.13) Let E ⊆ R and let ǫ > 0 be arbitrary. Show that there exists an

open set Uǫ ⊇ E such that λ(Uǫ) ≤ λ
∗
(E) + ǫ. Can you also conclude that

λ(Uǫ \ E) ≤ ǫ?

(3.14) For E ⊆ R, let

diameter(E) := sup{|x− y| | x, y ∈ E}.

Show that λ
∗
(E) ≤ diameter(E).

(3.15) Show that for E ⊆ R, λ
∗
(E) = 0 if and only if for every ǫ > 0, there

exist a sequence {In}n≥1 of intervals such that E ⊆ ∪∞
n=1 and λ

∗
(∪∞

n=1 \
E) < ǫ. Such sets are called Lebesgue null sets.Prove the following:
(i) Every singleton set {x}, x ∈ R, is a null set. Also every finite set is

a null set.

(ii) Any countably infinite set S = {x1, x2, x3, . . .} is a null set.
(iii) Q, the set of rational numbers, is a null subset of R.
(iv) Every subset of a null set is also a null set.
(iv) Let A1, A2, . . . , An, . . . be null sets. Then

⋃∞
n=1An is a null set.

(v) Let E ⊆ [a, b] be any set which has only a finite number of limit
points. Can E be uncountable? Can you say E is a null set?

(vi) Let E be a null subset of R and x ∈ R. What can you say about the
sets E + x := {y + x | y ∈ E} and xE := {xy | y ∈ E}?

(vii) Let I be an interval having at least two distinct points. Show that I
is not a null set.

(viii) If E contains an interval of positive length, show that it is not a null
set. Is the converse true, i.e., if E ⊆ R is not a null set, then does E
contain an interval of positive length?

(ix) Show that Cantor’s ternary set is an uncountable null set.

(3.16) Let E ⊆ [0, 1] be such that λ
∗
([0, 1] \E) = 0. Show that E is dense in

[0, 1]

(3.20) Let E ⊆ R be such that λ
∗
(E) = 0. Show that E has empty interior.

(3.21) Let A ∈ L and x ∈ R. Using equivalent definition of measurability,
show that

(i) A+ x ∈ L, where A+ x := {y + x | y ∈ A}.
(ii) −A ∈ L, where −A := {−y | y ∈ A}.
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(3.22) Let E ∈ BR. Show that E + x ∈ BR for every x ∈ R.

(3.23) Let E ∈ L and x ∈ R. Let

xE := {xy | y ∈ E} and − E := {−x | x ∈ E}.

Show that −E, xE ∈ L for every x ∈ E. Compute λ(xE) and λ(−E) in
terms of λ(E).

Optional Exercises

(3.24) Let E ⊆ R. Show that the following statements are equivalent:
(i) E ∈ L.

(ii) λ
∗
(I) = λ

∗
(E ∩ I) + λ

∗
(Ec ∩ I) for every interval I.

(iii) E ∩ [n, n+ 1) ∈ L for every n ∈ Z.

(iv) λ
∗
(E ∩ [n, n+ 1)) + λ

∗
(Ec ∩ [n, n+ 1)) = 1 for every n ∈ Z.
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