Classes of sets (Lectures 1, 2, 3 and 4)

1.1. Semi-algebra and algebra of sets

- (1.1) Let \mathcal{F} be any collection of subsets of a set X. Show that \mathcal{F} is an algebra if and only if the following hold:
 - (i) $\emptyset, X \in \mathcal{F}$.
 - (ii) $A^c \in \mathcal{F}$ whenever $A \in \mathcal{F}$.
 - (iii) $A \cup B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$.
- (1.2) Let \mathcal{F} be an algebra of subsets of X. Show that
 - (i) If $A, B \in \mathcal{F}$ then $A \triangle B := (A \setminus B) \cup (B \setminus A) \in \mathcal{F}$.
 - (ii) If $E_1, E_2, \ldots, E_n \in \mathcal{F}$ then there exists sets $F_1, F_2, \ldots, F_n \in \mathcal{F}$ such that $F_i \subseteq E_i$ for each $i, F_i \cap F_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^{\infty} E_i = \bigcup_{j=1}^{\infty} F_j$.

The next set of exercise describes some methods of constructing algebras and semi-algebras.

(1.3) Let X be a nonempty set. Let $\emptyset \neq E \subseteq X$ and let \mathcal{C} be a semi-algebra (algebra) of subsets of X.

$$\mathcal{C} \cap E := \{A \cap E \mid A \in \mathcal{C}\}.$$

Note that $\mathcal{C} \cap E$ is the collection of those <u>subsets</u> of E which are elements of \mathcal{C} . Show that $\mathcal{C} \cap E$ is a semi-algebra (algebra) of subsets of E.

(1.4) Let X, Y be two nonempty sets and $f : X \longrightarrow Y$ be any map. For $E \subseteq Y$, we write $f^{-1}(E) := \{x \in X \mid f(x) \in E\}$. Let \mathcal{C} be any semialgebra (algebra) of subsets of Y. Show that

$$f^{-1}(\mathcal{C}) := \{ f^{-1}(E) \mid E \in \mathcal{C} \}$$

1

is a semi-algebra (algebra) of subsets of X.

- (1.5) Give examples of two nonempty sets X, Y and algebras \mathcal{F}, \mathcal{G} of subsets of X and Y, respectively such that $\mathcal{F} \times \mathcal{G} := \{A \times B \mid A \in \mathcal{F}, B \in \mathcal{G}\}$ is not an algebra. (It will of course be a semi-algebra.
- (1.6) Let $\{\mathcal{F}_{\alpha}\}_{\alpha \in I}$ be a family of algebras of subsets of a set X. Let $\mathcal{F} := \bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$. Show that \mathcal{F} is an algebra of subsets of X. Is \mathcal{F} a semi-algebra of subsets of X If each \mathcal{F}_{α} a semi-algebra?
- (1.7) Let $\{\mathcal{F}_n\}_{n\geq 1}$ be a sequence of algebras of subsets of a set X and $\mathcal{F} := \bigcup_{n=1}^{\infty} \mathcal{F}_n$. In general, \mathcal{F} is not an algebra. Under what conditions on \mathcal{F}_n can you conclude that is also an algebra?
- (1.8) Let C be any collection of subsets of a set X. Then there exists a unique algebra \mathcal{F} of subsets of X such that $C \subseteq \mathcal{F}$ and if \mathcal{A} is any other algebra such that $C \subseteq \mathcal{A}$, then $\mathcal{F} \subseteq \mathcal{A}$. This unique algebra is called the **algebra** generated by C and is denoted by $\mathcal{F}(C)$.
- (1.9) Show that he algebra generated by \mathcal{I} , the class of all intervals, is $\{E \subseteq \mathbb{R} \mid E = \bigcup_{k=1}^{n} I_k, I_k \in I, I_k \cap I_\ell = \emptyset \text{ if } 1 \leq k \neq \ell \leq n\}.$
- (1.10) Let \mathcal{C} be any semi-algebra of subsets of a set X. Show that $\mathcal{F}(\mathcal{C})$, the algebra generated by \mathcal{C} , is given by

$$\{E \subseteq X \mid E = \bigcup_{i=1}^{n} C_i, C_i \in \mathcal{C} \text{ and } C_i \cap C_j = \emptyset \text{ for } i \neq j, n \in \mathbb{N}\}.$$

This gives a description of $\mathcal{F}(\mathcal{C})$, the algebra generated by a semi-algebra \mathcal{C} . In general, no description is possible for $\mathcal{F}(\mathcal{C})$ when \mathcal{C} is not a semi-algebra.

- (1.11) Let X be any nonempty set and $C = \{\{x\} \mid x \in X\} \bigcup \{\emptyset, X\}$. Is C a semi-algebra of subsets of X? What is the algebra generated by C? Does your answer depend upon whether X is finite or not?
- (1.12) Let \mathcal{C} be any collection of subsets of a set X and let $E \subseteq X$. Let

$$\mathcal{C} \cap E := \{ C \cap E \mid C \in \mathcal{C} \}.$$

Then the following hold:

$$\mathcal{C} \cap E \subseteq \mathcal{F}(\mathcal{C}) \cap E := \{A \cap E \mid A \in \mathcal{F}(\mathcal{C})\}.$$

Deduce that

 $\mathcal{F}(\mathcal{C} \cap E) \subseteq \mathcal{F}(\mathcal{C}) \cap E.$

(b) Let

 $\mathcal{A} = \{ A \subseteq X \mid A \cap E \in \mathcal{F}(\mathcal{C} \cap E) \}.$

Then, \mathcal{A} is an algebra of subsets of $X, \mathcal{C} \subseteq \mathcal{A}$ and

$$\mathcal{A} \cap E = \mathcal{F}(\mathcal{C} \cap E).$$

(c) Using (a) and (b), deduce that $\mathcal{F}(\mathcal{C}) \cap E = \mathcal{F}(\mathcal{C} \cap E)$.

Optional Exercises

- (1.13) Let \mathcal{C} be a semi-algebra of subsets of a set X. A set $A \subseteq X$ is called a σ -set if there exist sets $C_i \in \mathcal{C}, i = 1, 2, ...$, such that $C_i \cap C_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^{\infty} C_i = A$. Prove the following:
 - (i) For any finite number of sets C, C_1, C_2, \ldots, C_n in $\mathcal{C}, C \setminus (\bigcup_{i=1}^n C_i)$ is a finite union of pairwise disjoint sets from \mathcal{C} and hence is a σ -set.
 - (ii) For any sequence $\{C_n\}_{n\geq 1}$ of sets in \mathcal{C} , $\bigcup_{n=1}^{\infty} C_n$ is a σ -set.
 - (iii) A finite intersection and a countable union of σ -sets is a σ -set.
- (1.14) Let Y be any nonempty set and let X be the set of all sequences with elements from Y, i.e.,

$$X = \{ \underline{x} = \{ x_n \}_{n \ge 1} \mid x_n \in Y, n = 1, 2, \ldots \}.$$

For any positive integer k let $A \subseteq Y^k$, the k-fold Cartesian product of Y with itself, and let $i_1 < i_2 < \cdots < i_k$ be positive integers. Let

$$C(i_1, i_2, \dots, i_k; A) := \{ \underline{x} = (x_n)_{n \ge 1} \in X \mid (x_{i_1}, \dots, x_{i_k}) \in A \}.$$

We call $C(i_1, i_2, ..., i_k; A)$ a k-dimensional cylinder set in X with base A. Prove the following assertions:

- (a) Every k-dimensional cylinder can be regarded as a n-dimensional cylinder also for $n \ge k$.
- (b) Let
 - $\mathcal{A} = \{ E \subset X \mid E \text{ is an } n \text{-dimensional cylinder set for some } n \}.$

Then, $\mathcal{A} \cup \{\emptyset, X\}$ is an algebra of subsets of X.

1.2. Sigma algebra and monotone class

- (1.15) Let S be a σ -algebra of subsets of X and let $Y \subseteq X$. Show that $S \cap Y := \{E \cap Y \mid E \in S\}$ is a σ -algebra of subsets of Y.
- (1.16) Let $f: X \to Y$ be a function and \mathcal{C} a nonempty family of subsets of Y. Let $f^{-1}(\mathcal{C}) := \{f^{-1}(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C}\}$. Show that $\mathcal{S}(f^{-1}(\mathcal{C})) = f^{-1}(\mathcal{S}(\mathcal{C}))$.
- (1.17) Let X be an uncountable set and $\mathcal{C} = \{\{x\} \mid x \in X\}$. Identify the σ -algebra generated by \mathcal{C} .
- (1.18) Let \mathcal{C} be any class of subsets of a set X and let $Y \subseteq X$. Let $\mathcal{A}(\mathcal{C})$ be the algebra generated by \mathcal{C} .
 - (i) Show that $\mathcal{S}(\mathcal{C}) = \mathcal{S}(\mathcal{A}(\mathcal{C})).$
 - (ii) Let $\mathcal{C} \cap Y := \{E \cap Y \mid E \in \mathcal{C}\}$. Show that $\mathcal{S}(\mathcal{C} \cap Y) \subseteq \mathcal{S}(\mathcal{C}) \cap Y$.

(iii) Let

$$\mathcal{S} := \{ E \cup (B \cap Y^c) \mid E \in \mathcal{S}(\mathcal{C} \cap Y), B \in \mathcal{S}(C) \}.$$

Show that S is a σ -algebra of subsets of X such that $C \subseteq S$ and $S \cap Y = S(C \cap Y)$.

- (iv) Using (i), (ii) and (iii), conclude that $\mathcal{S}(\mathcal{C} \cap Y) = \mathcal{S}(\mathcal{C}) \cap Y$.
- (1.19) Let X be any topological space. Let \mathcal{U} denote the class of all open subsets of X and \mathcal{C} denote the class of the all closed subsets of X.
 - (i) Show that

$$\mathcal{S}(\mathcal{U}) = \mathcal{S}(\mathcal{C}).$$

This is called the σ -algebra of **Borel subsets** of X and is denoted by \mathcal{B}_X .

(ii) Let $X = \mathbb{R}$. Let \mathcal{I} be the class of all intervals and $\tilde{\mathcal{I}}$ the class of all left-open right-closed intervals. Show that $\mathcal{I} \subset \mathcal{S}(\mathcal{U}), \mathcal{I} \subset \mathcal{S}(\tilde{\mathcal{I}}), \tilde{\mathcal{I}} \subset \mathcal{S}(\mathcal{I})$ and hence deduce that

$$\mathcal{S}(\mathcal{I}) = \mathcal{S}(\widetilde{\mathcal{I}}) = \mathcal{B}_{\mathbb{R}}$$

- (1.20) Prove the following statements:
 - (i) Let \mathcal{I}_r denote the class of all open intervals of \mathbb{R} with rational endpoints. Show that $\mathcal{S}(\mathcal{I}_r) = \mathcal{B}_{\mathbb{R}}$.
 - (ii) Let *I_d* denote the class of all subintervals of [0, 1] with dyadic endpoints (i.e., points of the form *m*/2ⁿ for some integers *m* and *n*). Show that S(*I_d*) = *B_ℝ* ∩ [0, 1].
- (1.21) Let \mathcal{C} be any class of subsets of X. Prove the following:
 - (i) If C is an algebra which is also a monotone class, show that C is a σ -algebra.
 - (ii) $\mathcal{C} \subseteq \mathcal{M}(\mathcal{C}) \subseteq \mathcal{S}(\mathcal{C}).$
- (1.22) (σ -algebra monotone class theorem) Let \mathcal{A} be an algebra of subsets of a set X. Then, $\mathcal{S}(\mathcal{A}) = \mathcal{M}(\mathcal{A})$.

Prove the above statement by proving the following:

- (i) $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{S}(\mathcal{A}).$
- (ii) Show that $\mathcal{M}(\mathcal{A})$ is closed under complements by proving that for

$$\mathcal{B} := \{ E \subseteq X \mid E^c \in \mathcal{M}(\mathcal{A}) \},\$$

 $\mathcal{A} \subseteq \mathcal{B}$, and \mathcal{B} is a monotone class. Hence deuce that $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{B}$. (iii) For $F \in \mathcal{M}(\mathcal{A})$, let

 $\mathcal{L}(F) := \{ A \subseteq X \mid A \cup F \in \mathcal{M}(\mathcal{A}) \}.$

Show that $E \in \mathcal{L}(F)$ iff $F \in \mathcal{L}(E)$, $\mathcal{L}(F)$ is a monotone class, and $\mathcal{A} \subseteq \mathcal{L}(F)$ whenever $F \in \mathcal{A}$. Hence, $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{L}(F)$, for $F \in \mathcal{A}$.

(iv) Using (iii), deduce that $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{L}(E)$ for every $E \in \mathcal{M}(\mathcal{A})$, i.e., $\mathcal{M}(\mathcal{A})$ is closed under unions also. Now use exercise (1.22) to deduce that $\mathcal{S}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$.