Elementary Numerical Analysis

by

Professor Rekha P. Kulkarni

Department of Mathematics
Indian Institute of Technology Bombay

Model Solutions: Quiz 1

1. Let

$$
f(x)=198 x^{4}+27 x^{3}-10 x^{2}+47 x+13 .
$$

Find the divided difference $f\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]$.
Ans.: 198
Explanation: $f\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]=\frac{f^{(4)}(c)}{4!}$.
2. Let

$$
x_{0}=1, x_{1}=\frac{4}{3}, x_{2}=\frac{5}{3}, x_{3}=2
$$

and for $i=0,1,2,3$, let $\ell_{i}(x)$ be the Lagrange interpolation polynomial of degree 3 such that

$$
l_{i}\left(x_{i}\right)=1, l_{i}\left(x_{j}\right)=0, \text { for } i \neq j
$$

Evaluate

$$
l_{0}\left(\frac{3}{2}\right)+l_{1}\left(\frac{3}{2}\right)+l_{2}\left(\frac{3}{2}\right)+l_{3}\left(\frac{3}{2}\right) .
$$

(1 mark)
Ans.: 1
Explanation: $\sum_{i=0}^{3} l_{i}(x)=1$.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be such that

$$
f(0)=1, f^{\prime}(0)=3, f(1)=7, f^{\prime}(1)=10
$$

where $f^{\prime}(x)$ denotes the derivative of f at x. Find the cubic polynomial which interpolates f and f^{\prime} at 0 and at 1.
Ans.: $1+3 x+3 x^{2}+x^{2}(x-1)$.
4. Let $f:[0,7] \rightarrow \mathbb{R}$ be such that

$$
f(0)=3, f(1)=16, f(3)=108, f(7)=724
$$

Find
(a) a polynomial of degree ≤ 2 which interpolates f at $0,1,3$,

Ans.: $3+13 x+11 x(x-1)$
(b) a polynomial of degree ≤ 3 which interpolates f at $0,1,3,7$.

Ans.: $3+13 x+11 x(x-1)+x(x-1)(x-3)$.
5. Let $f(x)=\frac{1}{x}, x \in[1,3]$ and $p_{2}(x)$ be the quadratic polynomial which interpolates f at $1,2,3$. Find the best possible upper bound for $\left\|f-p_{2}\right\|_{\infty}=\max _{x \in[1,3]}\left|f(x)-p_{2}(x)\right|$.
Ans.: $\frac{2}{3 \sqrt{3}}$.
Explanation:

$$
f(x)-p_{2}(x)=\frac{f^{(3)}\left(c_{x}\right)}{3!}(x-1)(x-2)(x-3),\left\|f^{(3)}\right\|_{\infty}=6
$$

and

$$
\max _{x \in[1,3]}|(x-1)(x-2)(x-3)|=\frac{2}{3 \sqrt{3}}
$$

6. Evaluate

$$
\int_{0}^{4}(x-1)(x-2)(x-4) d x
$$

Ans. $-\frac{16}{3}$.
Explanation: Apply Simpson Rule.

