Elementary Numerical Analysis

by

Professor Rekha P. Kulkarni
Department of Mathematics
Indian Institute of Technology Bombay
\section*{Examination 2}

Time: 3 hours

1. Show that if f is k times continuously differentiable on $[a, b]$ and $x_{0}, x_{1}, \cdots, x_{k}$ are distinct points in $[a, b]$, then

$$
f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{f^{(k)}(c)}{k!}
$$

for some $c \in[a, b]$.
2. Consider

$$
\int_{-1}^{1} f(x) d x \approx w_{0} f(-1)+w_{1} f\left(x_{1}\right)+w_{2} f(1)
$$

Determine w_{0}, w_{1}, w_{2} and x_{1} such that the formula is exact for cubic polynomials. (4 marks)
3. Show that if a nonsingular linear system $A x=b$ is altered by multiplication of its j th column by $c \neq 0$, then the solution is altered only in the j th component, which is multiplied by $1 / c$.
(2 marks)
4. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Define $\|x\|_{1}=\sum_{j=1}^{n}\left|x_{j}\right|$ and $\|A\|_{1}$ be the induced matrix norm. Show that

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

5. Let f be a thrice differentiable function in a neighbourhood of a point a. Show that

$$
\left|f^{\prime}(a)-\frac{f(a+h)-f(a-h)}{2 h}\right| \leq C h^{2}
$$

where C is a constant independent of h.
6. Let A be a 4×4 matrix with eigenvalues $\frac{1}{3}, \frac{1}{2}, 1,5$. Based on this information find the best
possible lower bound for condition number of A with respect to 1 norm. Justify your answer.
(3 marks)
7. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix such that

$$
\sum_{j \neq i}\left|a_{i j}\right|<\left|a_{i i}\right|, i=1,2, \cdots, n
$$

Define Jacobi iteration method for an iterative solution of $A x=b$. Let $e^{(k)}$ denote the error in the k-th iterate. Show that $\left\|e^{(k)}\right\|_{\infty} \rightarrow 0$ as $k \rightarrow \infty$.
8. Consider

$$
A=\left[\begin{array}{rrrr}
4 & -1 & 0 & 0 \tag{4marks}\\
-1 & 4 & -1 & 0 \\
0 & -1 & 4 & -1 \\
0 & 0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
2 \\
3
\end{array}\right]
$$

Choosing the initial approximation to be a zero vector, find the first iterate in Gauss-Seidel method.
(3 marks)
9. Let $A=\left[a_{i j}\right]$ be a 20×20 tridiagonal matrix such that $a_{i i}=4, i=1,2, \cdots, 20$ and
$a_{i, i+1}=1, i=1,2, \cdots, 19$ and $a_{i-1, i}=1, i=2,3, \cdots, 20$. Show that the eigenvalues of A are contained in $[2,6]$.
(3 marks)
10. Define Euler Method and the Midpoint method for approximate solution of the intial value problem

$$
y^{\prime}=f(x, y), y(a)=y_{0}, \quad x \in[a, b] .
$$

Obtain the local discretization error in both the methods.
11. Let $g:[a, b] \rightarrow[a, b]$ be continuously differentiable and $M=\max _{x \in[a, b]}\left|g^{\prime}(x)\right|<1$. Let x^{*} be the unique fixed point of g in $[a, b]$. Let $x_{n+1}=g\left(x_{n}\right), x_{0} \in[a, b]$. Show that

$$
\begin{equation*}
\left|x_{n+1}-x^{*}\right| \leq \frac{M}{1-M}\left|x_{n+1}-x_{n}\right| \tag{4marks}
\end{equation*}
$$

12. Let A be an $n \times n$ positive definite matrix with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ arranged in the descending order. Let $A u_{j}=\lambda_{j} u_{j},\left\|u_{j}\right\|_{2}=1, j=1,2, \cdots, n$. Let x be a non-zero vector such that $\left\langle x, u_{1}\right\rangle \neq 0$. Show that $\frac{A^{j} x}{\left\|A^{j} x\right\|_{2}}$ converges to an eigenvector of A associated with λ_{1}. (4 marks)
13. Let Q be an $n \times n$ real matrix such that $Q^{t} Q=I$. Show that the columns of Q are orthonormal. (3 marks)
14. Let A be an $n \times n$ real matrix such that $A=Q R$, where $Q^{t} Q=I$ and R is an upper triangular matrix. Define $A_{1}=R Q$. Show that A and A_{1} have the same eigenvalues.
(3 marks)
