Theorem 4.1 (Universal property of quotients):

Suppose that $ X$ is a topological space, $ Y$ is a set, $ f : X \longrightarrow Y$ is a surjective map and $ Y$ is assigned the quotient topology induced by $ f$. Then given any topological space $ Z$ and map $ g : Y \longrightarrow Z$, the map $ g$ is continuous if and only if $ g\circ f : X \longrightarrow Z$ is continuous.

$\displaystyle \xymatrix{
X \ar[rr]^{f}\ar[rd]_{g\circ f} & & Y \ar[ld]^{g}\\
& Z
}
$



nisha 2012-03-20