Definition 17.1:

Let $ p: {\tilde X}\longrightarrow X$ be a covering projection and $ x_0 \in X$ be a given point. For a loop $ \gamma$ in $ X$ based at $ x_0$, define the right-action of $ \pi_1(X, x_0)$ on the fiber $ p^{-1}(x_0)$ as follows. For $ {\tilde x}_1\in p^{-1}(x_0)$,

$\displaystyle {\tilde x}_1\cdot[\gamma] = {\tilde \gamma}(1),\eqno(17.1)
$

where $ \tilde \gamma$ is the unique lift of $ \gamma$ starting at $ {\tilde x}_1$.

nisha 2012-03-20