Standard Spaces

  1. $ \mathbb{R}^n = \{(x_1, x_2, \dots, x_n)/ x_i \in \mathbb{R},\; i = 1, 2,\dots,n\}$
  2. $ \mathbb{C}^n = \{(z_1, z_2, \dots, z_n)/ z_i \in \mathbb{C},\; i = 1, 2,\dots,n\}$
  3. $ \Vert{\bf x}\Vert = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$, $ \;{\bf x} = (x_1, x_2,\dots, x_n)\in \mathbb{R}^n$
  4. $ S^{n-1} = \{{\bf x}\in \mathbb{R}^n/ \Vert{\bf x}\Vert = 1\}$
  5. $ E^n = \{{\bf x}\in \mathbb{R}^n/ \Vert{\bf x}\Vert \leq 1\}$
  6. $ I^n$ is the standard unit cube, the Cartesian product of $ n$ copies of $ [0, 1]$.
  7. $ \dot{I}^n$ is the (topological) boundary of $ I^n$.
  8. $ \mathbb{R}P^n$ is the $ n$-dimensional real projective space
  9. $ M(n,\mathbb{R})$ is the set of all $ n\times n$ matrices with real entries
  10. $ GL(n, \mathbb{R})$ is the set of all invertible $ n\times n$ matrices with real entries
  11. $ O(n, \mathbb{R})$ is the set of all orthogonal matrices with real entries
  12. $ SO(n, \mathbb{R})$ is the set of all orthogonal matrices with real entries and determinant one
  13. $ U(n)$ is the set of all $ n\times n$ unitary matrices with complex entries
  14. $ SU(n)$ is the set of all $ n\times n$ unitary matrices with determinant one
  15. Gr is the category of groups
  16. AbGr is the category of abelian groups
  17. Top is the category of topological spaces
  18. $ {\bf Top}^2$ is the category of pairs of topological spaces
  19. $ {\bf Top}_0$ is the category of pointed topological spaces
nisha 2012-03-20