Module 3 : Fundamental groups & its basic properties Lecture 14 : Test - II

- 1. Suppose X is a metric space and A is a retract of X. Show that A is closed in X. Is the space homeomorphic to the letter Y a deformation retract of a space homeomorphic to E^2 ?
- 2. Show that if X has the fixed point property and A is a retract of X then A also has the fixed point property.
- 3. Find the degree of the following maps $f: S^1 \longrightarrow S^1$ given by:

(i)
$$f(z) = \exp(z - \text{Re } z)$$
. (ii) $f(z) = \overline{z}^2 z^3$.

- 4. Show that S^1 is not homeomorphic to any subset of \mathbb{R} . Can S^2 be homeomorphic to a subset of \mathbb{R}^2 ?
- 5. Determine $\pi_1(\mathbb{R}P^2 \{p\})$ where p is any point of $\mathbb{R}P^2$.
- 6. For the map $f: S^1 \longrightarrow S^1 \times S^1$ given by $f(z) = (z^p, z^q)$, where p and q are positive integers, find the induced group homomorphism $f_*: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$.