1. Prove that the intervals (a, b) and [a, b) are non-homeomorphic subsets of \mathbb{R} . Prove

that if A and B are homeomorphic subsets of \mathbb{R} , then A is open in \mathbb{R} if and only if B is open in \mathbb{R} . Is an injective continuous map $f : \mathbb{R} \longrightarrow \mathbb{R}$ a homeomorphism onto its image?

- 2. Using Tietze's extension theorem or otherwise construct a continuous map from \mathbb{R} into \mathbb{R} such that the image of \mathbb{Z} is not closed in \mathbb{R} .
- 3. If K is a compact subset of a topological group G and C is a closed subset of G, is it true that KC is closed in G? What if K and C are merely closed subsets of G?
- 4. Removing three points from $\mathbb{R}P^2$ we get an open set G and a continuous map $f: G \longrightarrow \mathbb{R}P^2$ given by $f([x_1, x_2, x_3]) = [x_2x_3, x_3x_1, x_1x_2]$. Which three

points need to be removed? Prove the continuity of f.

5. Let
$$C = \{ (\mathbf{v}_1, \mathbf{v}_2) \in S^2 \times S^2 / \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0 \}$$
. Is C connected? Is C

homeomorphic to $SO(3,\mathbb{R})$?

6. Prove that $\mathbb{R}P^1$ is homeomorphic to S^1 .