Module 3 : Fundamental groups & its basic properties

Lecture 9 : Functorial properties of the fundamental group

Exercises:

- 1. Show that the sphere S^2 retracts onto one of its longitudes. If X is the space obtained from S^2 by taking its union with a diameter, there is a surjective group homomorphism $\pi_1(X) \longrightarrow \mathbb{Z}$.
- 2. Prove that A is a retract of X if and only if every space Y, every continuous map $f: A \longrightarrow Y$ has a continuous extension $\tilde{f}: X \longrightarrow Y$.
- 3. Show that the fundamental group respects arbitrary products.
- 4. Construct a retraction from $\{(x, y) : x \text{ or } y \text{ is an integer }\}$ onto the boundary of I^2
- 5. Show that every homeomorphism of E^2 onto itself must map the boundary to the boundary.
- Given that there exists a functor T from the category Top to the category AbGr such that T(X) is the trivial group for every convex subset X of a Euclidean space and T(Sⁿ) is a non-trivial group, prove that Sⁿ is not a retract of the closed unit ball in ℝⁿ⁺¹.