Module 7 : Relative homology, exicism and the Jordan Brouwer separation theorem Lecture 38 : Relative homology

Exercises:

- 1. Verify that the diagram (37.5) commutes.
- 2. Determine $H_n(X, A)$ when $A = \emptyset$, and when A is a singleton and $n \ge 1$. What happens if n = 0?
- 3. Compute $H_n((S^1 \times S^1)/(S^1 \vee S^1))$ and compare it with the absolute homology $H_n((S^1 \times S^1)/(S^1 \vee S^1))$.
- 4. Compute $H_k(E^n/S^{n-1})$ and compare it with $H_k(E^n, S^{n-1})$.
- 5. In example (35.1), prove that X/A is homeomorphic to $\mathbb{R}P^2$. Compare the groups

 $H_n(X, A)$ with the groups $H_{n+1}(X, A)$. Hint: To set up the homeomorphism note that $(x, y) \mapsto (x\sqrt{1-y^2}, y)$ maps each $[-1, 1] \times \{y\}$ homeomorphically onto the chord at height y.