Module 6 : Basic Homology Theory Lecture 36 : Maps of Spheres

Exercises:

- 1. Show that if R' and R'' are two reflections (each with respect to a coordinate plane) then they are conjugate by a homeomorphism. Deduce that both R' and R'' have degree -1.
- 2. Show that if a continuous map $f: S^n \longrightarrow S^n$ misses a point of S^n then f is

homotopic to the constant map and so has degree zero.

- 3. Show that if n is odd then the antipodal map of S^n is homotopic to the identity map. Hint: Do it first for the case and show that the homotopy may be achieved via a continuous rotation. The general case follows along similar lines by working with pairs of coordinates.
- 4. Show that $\mathbb{R}P^{2n}$ has the fixed point property.
- 5. Let $\eta: S^{2n} \longrightarrow \mathbb{R}P^{2n}$ be the covering projection. Show that $H_{2n}(\eta)$ is the zero map.
- 6. Show that the map (36.5) is a homeomorphism and (36.6) defines a continuous map. More generally given a continuous map $f: X \longrightarrow Y$ show that the composite

$$X \times [0,1] \xrightarrow{f \times \mathrm{id}} Y \times [0,1] \longrightarrow \Sigma Y$$

induces a map $\Sigma f: \Sigma X \longrightarrow \Sigma Y$. Imitate the computation in theorem [//] of lecture

[/] to show that $H_{n+1}(\Sigma X) = H_n(X)$ when $n \ge 1$. What happens when n = 0?

7. Prove theorem (36.11). Note that the map $f: S^1 \longrightarrow S^1$ given by $f(z) = z^m$ has

degree m.

8. Determine the degree of a polynomial as a map from S^2 to itself. Reprove the fundamental theorem of algebra.