Module 6 : Basic homology theory
Lecture 33 : Homotopy invariance of homology

Exercises:

1. Show that the $p+q-1$ chain on the right hand side of (33.4) is a cycle.
2. Check that $\sigma \times \tau$ as defined by equation (33.5) satisfies (33.1).
3. Show that the product in theorem (33.1) defines a bilinear map

$$
H_{p}(X) \times H_{q}(Y) \longrightarrow H_{p+q}(X \times Y)
$$

4. Determine explicitly the two/three chain z satisfying (33.4) when
(i) $p=1$ and $q=1$.
(ii) $p=1$ and $q=2$.

Hint: In the proof of lemma (32.2), we chopped the square into two triangles. When Π_{X} we need to chop a prism into three pieces and map Δ_{3} affinely onto each of them.
5. Use the map Π_{X} of the previous lecture to calculate the generators of $H_{1}\left(S^{1} \times S^{1}\right)$.
6. Use equation (33.1) to determine the image of the pair of generating one cycles of the previous exercise under the map $H_{1}\left(S^{1}\right) \times H_{1}\left(S^{1}\right) \longrightarrow H_{2}\left(S^{1} \times S^{1}\right)$.

