Lecture 2 : Preliminaries from general topology

Exercises:

1. Prove that a topological space is compact if and only if it satisfies the following condition known as the *finite intersection property*. For every family $\{F_{\alpha}\}$ of closed sets with

 $\bigcap_{\alpha} F_{\alpha} = \emptyset$, there is a finite sub-collection whose intersection is empty

- Show that f: [0, 1] → [0, 1] is continuous if and only if its graph is a compact subset of I².
- 3. Examine whether the exponential map from \mathbb{C} onto $\mathbb{C} \{0\}$ is proper. What about the exponential map as a map from \mathbb{R} onto $(0, \infty)$?
- 4. (Gluing Lemma) Suppose that {U_α}_{α∈Λ} is a family of open subsets of a topological space and for each α ∈ Λ we are given a continuous function f_α : U_α → Y. Assume that whenever f_α(x) = f_β(x) whenever x ∈ U_α ∩ U_β. Show that there

exists a unique continuous function $f: \bigcup_{\alpha \in \Lambda} U_{\alpha} \longrightarrow Y$ such that $f(x) = f_{\alpha}(x)$ for

all $x \in U_{\alpha}$ and for all $\alpha \in \Lambda$. Show that the result holds if all the U_{α} are closed sets

and Λ is a finite set.

- 5. How would you show rigorously that the closed unit disc in the plane is homeomorphic to the closed triangular region determined by three non-collinear points? You are allowed to use results from complex analysis, provided you state them clearly.
- 6. Prove that any two closed triangular planar regions (as described in the previous exercise) are homeomorphic. Show that any such closed triangular region is homeomorphic to I^2 .
- 7. Suppose that Z is a Hausdorff space and $f, g: Z \longrightarrow X$ are continuous functions

then the set $\{z \in Z/f_1(z) = f_2(z)\}$ is closed in Z.

8. Show that the space obtained by rotating the circle $(x - 2)^2 + y^2 = 1$ about the yaxis is homeomorphic to $S^1 \times S^1$.