Module 6 : Basic Homology Theory

Lecture 29 & 30 : The Singular chain complex and homology groups

Exercises:

- 1. Sketch Δ_n for n=1,2,3. Show that Δ_n is a compact and connected subspace of \mathbb{R}^{n+1}
- 2. Discuss the continuity of the maps (29.1). Prove lemma (29.1). what about the cases $i \leq j$?
- 3. Verify equation (29.8).
- 4. Determine the values of n (n = 1, 2, ...) for which a constant function $\Delta_n \longrightarrow X$

an n-cycle.

5. Show that the family of all chain complexes forms a category in which the set of morphisms Mor(G, K) between any two chain complexes G and K is the set of all

chain maps from G to K.

6. Naturality of (29.17)-(29.18). Assume given a commutative diagram of chain complexes with exact rows:

Denoting by δ_n and δ'_n the connecting homomorphisms, sketch relevant diagrams and prove that

$$\delta'_n \circ H_n(\eta) = H_n(\psi) \circ \delta_n$$