Module 5 : Seifert Van kampen Theorem & its application

Lecture 26 : Seifert Van Kampen theorem

Exercises:

1. Fill in the details in the computation of the fundamental group of the projective plane, Klein's bottle and the torus done in the lecture by providing a careful proof of equations (26.8), (26.10) and (26.11). Hint: Use polar coordinates. Continuously shrink the path β

to the point x_0 .

2. Show that the fundamental group of the wedge of n copies of S^1 is the free group on n generators. Calculate the fundamental group of the truncated grid

 $\{(x,y)\in \mathbb{R}^2/x\in \mathbb{Z} \text{ or } y\in \mathbb{Z}, \ 0\leq x\leq n, \ 0\leq y\leq n\}.$

- 3. Determine the generators of double torus by expressing it as a union of open sets each of which is a torus from which a tiny closed disc has been removed.
- 4. Let C be the union of the two *unlinked* circles

$$(x-2)^2 + y^2 = 1, \ z = 0,$$

 $(x+2)^2 + y^2 = 1, \ z = 0.$

in \mathbb{R}^3 . Show that $\pi_1(\mathbb{R}^3 - C)$ is the free group on two generators.

- 5. Calculate the fundamental groups of the following spaces
 - (i) \mathbb{R}^4 minus a line.
 - (ii) \mathbb{R}^4 minus a two dimensional linear subspace.
 - (iii) \mathbb{R}^4 minus two parallel lines.
 - (iv) \mathbb{R}^4 minus two intersecting lines.
 - (v) \mathbb{R}^3 minus the coordinate axes
 - (vi) $\mathbb{C}^2 \{(z_1, z_2)/z_1 z_2 = 0\}$
 - (vii) \mathbb{R}^3 minus finitely many points.