Module 5 : Seifert Van kampen Theorem & its application Lecture 23 & 24: Coproducts and push-outs

Exercises:

- Show that the maps i₁ and i₂ in definition (23.1) are injective and that the images of i₁ and i₂ generate G₁ * G₂. Hint: Use the universal property with H = G₁, f₁ = i₁ and i₂ = 1.
- 2. Show that abelianizing a free group on k generators results in a group isomorphic to the direct sum of k copies of \mathbb{Z} . Use the fact that the coproduct in **AbGr** is the direct sum.
- 3. Is there a surjective group homomorphism from the direct sum $\mathbb{Z} \times \mathbb{Z}$ onto

 $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$? Prove that if k and l are distinct positive integers, the free group on k generators is not isomorphic to the free group on l generators.

- 4. Show that $\langle a, c \mid a^2 c^2 = 1 \rangle$ is also a presentation of the fundamental group of the Klein's bottle.
- Construct the push-out for the pair j₁: C → A₁ and j₂: C → A₂ in the category AbGr?
- 6. Suppose that C is the trivial group in the definition of push-out in the category **Gr**, show that the resulting group is the coproduct of the two given groups. What happens in the category **AbGr**? Describe explicitly the construction of the group specifying the subgroup that is being factored out.