Module 4 : Theory of Covering Spaces Lecture 20 : Orbit Spaces

Exercises:

- 1. Suppose that G is a finite group acting freely on a Hausdorff space then the action is properly discontinuous and hence deduce that the group action in the example of the generalized Lens space is properly discontinuous.
- 2. Suppose that $p: \tilde{X} \longrightarrow X$ is a covering projection and \tilde{X} is locally path connected

and simply connected. Show that if U is an evenly covered open set in X and \tilde{U} is a sheet lying above it then $\phi(\tilde{U}) \cap \tilde{U} = \emptyset$ for every $\phi \in \operatorname{Deck}(\tilde{X}, X)$ and $\phi \neq \operatorname{id}$

 \tilde{X} . Deduce that the group of deck transformations acts properly discontinuously on \tilde{X} .

How does this relate to theorem 17.2?

- 3. Does the fundamental group of Klein's bottle have elements of finite order? Identify this group with a familiar group that we have already encountered in lecture 7. What is its abelianization?
- 4. Show that the torus is obtained as the orbit space of a group of homeomorphisms acting properly discontinuously on \mathbb{R}^2 . Write out these homeomorphisms explicitly.
- 5. Show that the torus is a double cover of the Klein's bottle. Hence the fundamental group of the Klein's bottle must contain a subgroup of index two. Determine this subgroup.
- 6. Show that the cylinder is a two-sheeted cover of the Möbius band.
- 7. Suppose that G is a topological group, H is a discrete subgroup of G. Show that there exists a neighborhood U of the identity such that $U = U^{-1}$, $U \cap H = \{1\}$ and that
 - ${hU/h \in H}$ is a family of disjoint open sets. Deduce that the quotient map

 $\eta: G \longrightarrow G/H$ is a covering projection. Also show that G/h is Hausdorff.