Module 4 : Theory of Covering Spaces Lecture 18 : The lifting criterion

Exercises:

- 1. For the map S in example (18.3) show that S_* is the map $\mathbb{Z} \longrightarrow \mathbb{Z}$ given by $x \mapsto 2x$.
- 2. Suppose G is a path connected topological group with unit element e and $p: \tilde{G} \longrightarrow G$ is a covering map. For any choice of $\tilde{e} \in p^{-1}(e)$ show that there is a

group operation on \tilde{G} with unit element \tilde{e} that makes \tilde{G} into a topological group and p is a continuous group homomorphism.

3. Show that if Ω is an open subset of $\mathbb{C} - \{0\}$ on which a continuous branch of the logarithm exists then this branch is automatically holomorphic. Likewise show that the continuous branch of $\sqrt{z(2z-1)}$ on $\mathbb{C} - [0, 1/2]$ obtained in the lecture is

holomorphic.

- 4. Use the fact that S^{n-1} is not a retract of S^n to prove that $\mathbb{R}P^{n-1}$ is not a retract of $\mathbb{R}P^n$.
- 5. Show that any continuous map $S^n \longrightarrow S^1$ is homotopic to the constant map if $n \ge 2$. What about maps from the projective spaces $\mathbb{R}P^n \longrightarrow S^1$ $(n \ge 2)$?