Module 4 : Theory Covering Spaces Lecture 15 : Covering Projections

Exercises:

- 1. Explain why the map $\phi : \mathbb{C} \{0, 1/2\} \longrightarrow \mathbb{C} \{-1/4\}$ given by $\phi(z) = z(z-1)$ is not a covering projection?
- 2. Show that the map $f: S^1 \longrightarrow S^1$ given by $f(z) = z^k$ is a covering projection for every $k \in \mathbb{N}$.
- 3. Suppose $p: \tilde{X} \longrightarrow X$ is a covering projection and E is a closed subset of X. Is the map

$$p: \tilde{X} - p^{-1}(E) \longrightarrow X - E$$

a covering projection?

- Find a discrete subset E of C such that sin : C − E → C − {−1,1} is a covering projection.
- 5. Suppose that $p: \tilde{X} \longrightarrow X$ and $q: \tilde{Y} \longrightarrow Y$ are covering projections then the product map $(p,q): \tilde{X} \times \tilde{Y} \longrightarrow X \times Y$ given by

$$(p,q)(z,w) = (p(z),q(w)), \quad z \in \tilde{X}, w \in \tilde{Y},$$

is a covering projection. In particular the plane \mathbb{R}^2 is a covering space of the torus $S^1 \times S^1$.

6. Let Y be the infinite grid

$$Y = \{(x, y) \in \mathbb{R}^2 | x \in \mathbb{Z} \text{ or } y \in \mathbb{Z}\}$$

is a covering projection of the figure eight loop. Draw the figure eight loop on the torus.

7. Show that the set G in theorem (15.2) is closed without using the Hausdorff assumption on T.