Problem set 9 : Cyclotomic Extensions

(1) Determine $\left[\mathbb{Q}\left(\zeta_{7}, \zeta_{3}\right): \mathbb{Q}\left(\zeta_{3}\right)\right]$.
(2) Determine a primitive element of a subfield K of $E=\mathbb{Q}\left(\zeta_{13}\right)$ so that $[K: \mathbb{Q}]=3$.
(3) Put $\zeta=\zeta_{7}$. Determine the degrees of $\zeta+\zeta^{5}$ and $\zeta+\zeta^{5}+\zeta^{8}$ over \mathbb{Q}.
(4) Put $\zeta=\zeta_{11}$ and $\alpha=\zeta+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{9}$. Show that $[\mathbb{Q}(\alpha): \mathbb{Q}]=2$.
(5) Let ν be a primitive element modulo p where p is a prime. Thus $\mathbb{F}_{p}^{\times}=(\nu)$. Let $\zeta=\zeta_{p}$. Using the list $\left\{\zeta^{\nu^{0}}, \zeta^{\nu^{1}}, \zeta^{\nu^{2}}, \ldots, \zeta^{\nu^{p-2}}\right\}$, show how to find the sum β of powers of ζ which determines a subfield $\mathbb{Q}(\beta)$ of $\mathbb{Q}(\zeta)$ so that $[\mathbb{Q}(\beta): \mathbb{Q}]=d$ where $d \mid(p-1)$.
(6) Let K be finite extension of \mathbb{Q}. Show that K contains only a finite number of roots of unity.
(7) Suppose $A \in \mathbb{C}^{n \times n}$ and $A^{k}=I$. for some integer $k \in \mathbb{N}$. Show that A can be diagonalized. Prove that the matrix $A=\left[\begin{array}{ll}1 & \alpha \\ 0 & 1\end{array}\right]$ where $\alpha \in K$ and K is a field of chracteristic p satisfies $A^{p}=I$ and cannot be diagonalized if $\alpha \neq 0$.
(8) Show that $\Phi_{n}(x)=x^{\phi(n)} \Phi_{n}(1 / x)$ and deduce that the coefficients of $\Phi_{n}(x)$ satisfy $a_{k}=a_{\phi(n)-k}$ for all $0 \leq k \leq \phi(n)$.
(9) Establish the following formulas:
(a) $\Phi_{n}(x)=\Phi_{m}\left(x^{n / m}\right)$ where m is the product of distinct prime factors of n.
(b) $\Phi_{p n}(x)=\Phi_{n}\left(x^{p}\right) / \Phi_{n}(x)$ where p is coprime to n.
(c) $\Phi_{2 n}(x)=\Phi_{n}(-x)$ where $n \geq 1$ is an odd integer.
(10) Let ζ, η and ω denote the primitive fifteenth, fifth and cube roots of unity.
(a) Describe all the automorphisms in $G:=G(\mathbb{Q}(\zeta) / \mathbb{Q})$.
(b) Show that G is isomorphic to a direct product of two cyclic groups. Construct this isomorphism.
(c) Show that $\mathbb{Q}(\omega), \mathbb{Q}(\zeta), \mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\omega, \sqrt{5})$ are subfields of $\mathbb{Q}(\zeta)$.
(d) Make the Galois correspondence between the subfields of $\mathbb{Q}(\zeta)$ and subgroups of G explicit.

