Problem set 8 : Fundamental Theorem of Galois Theory

- Let K be a splitting field of x⁴ − 2 over Q. List all elements of G = G(K/Q). Draw a diagram showing primitive elements of all the subfields of K/Q. Draw the lattice of the subgroups of G and match them with the fixed fields.
- (2) Determine the Galois group of $f(x) = (x^2 2)(x^2 3)(x^2 5)$. Determine all the subfields of the splitting field of f(x).
- (3) Prove that the Galois group of $x^p 2$, where p is a prime, is isomorphic to the group

$$G = \left\{ \left[\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right] : a, b \in \mathbb{F}_p \text{ and } a \neq 0 \right\}.$$

- (4) Let $f(x) \in \mathbb{Z}[x]$ be an irreducible quartic with Galois group S_4 over \mathbb{Q} . Let θ be a root of f(x). Show that there is no field properly contained in $\mathbb{Q}(\theta)/\mathbb{Q}$. Is $\mathbb{Q}(\theta)/\mathbb{Q}$ a Galois extension ?
- (5) Show that if the Galois group of a rational cubic f(x) is cyclic of order 3 then f(x) has only real roots.
- (6) Consider the polynomial $f(x) = x^4 2x^2 2$.
 - (a) Show that the roots of the quartic are

$$\alpha_1 = \sqrt{1 + \sqrt{3}}, \ \alpha_2 = \sqrt{1 - \sqrt{3}}, \ \alpha_3 = -\alpha_1 \ \text{and} \ \alpha_4 = -\alpha_2.$$

- (b) Prove that $K_1 = \mathbb{Q}(\alpha_1) \neq K_2 = \mathbb{Q}(\alpha_2)$ and $K_1 \cap K_2 = \mathbb{Q}(\sqrt{3}) = F$.
- (c) Show that K_1 , K_2 and K_1K_2 are Galois over F
- (d) Show that $G(K_1K_2/F)$ is the Klein 4-group. Determine the automorphisms in this group.
- (e) Show that the Galois group of f(x) over \mathbb{Q} is dihedral of order 8.
- (7) Let $\mathbb{C}(X)$ denote the rational function field in the indeterminate X over \mathbb{C} . Let $a \in \mathbb{C}$ and $\sigma_a : \mathbb{C}(X) \to \mathbb{C}(X)$ be the automorphism that substitutes X by X + a. Put $G = \{\sigma_a : a \in \mathbb{C}\}$. Show that $\mathbb{C}(X)^G = \mathbb{C}$.
- (8) Suppose that the Galois group of a field extension K/F is the Klein 4-group V_4 . Show that K/F is biquadratic.

- (9) Let $E = \mathbb{Q}(r)$ where r is a root of $f(x) = x^3 + x^2 2x 1$ in \mathbb{C} . Show that $f(r^2 - 2) = 0$. Determine $G(E/\mathbb{Q})$.
- (10) Let $E = \mathbb{C}(t)$ where t is a transcendental over \mathbb{C} . Let $\omega = e^{2\pi i/3}$. Define the \mathbb{C} -automorphisms σ and τ of E by the equations $\sigma(t) = \omega t$ and $\tau(t) = 1/t$. Show that

$$\sigma^3 = \tau^2 = id$$
 and $\tau\sigma = \sigma^{-1}\tau$.

Show that the group G of automorphisms generated by σ and τ has order 6 and $E^G = \mathbb{C}(t^3 + t^{-3})$.

(11) Let x, y be variables. Let $a, b, c, d \in \mathbb{Z}$ and n = |ad - bc|. Show that $L = \mathbb{C}(x, y)$ is a Galois extension of $K = \mathbb{C}(x^a y^b, x^c y^d)$ of degree n. Find G(L/K).

 $\mathbf{2}$