Problem set 8 : Fundamental Theorem of Galois Theory

(1) Let K be a splitting field of $x^{4}-2$ over \mathbb{Q}. List all elements of $G=G(K / \mathbb{Q})$. Draw a diagram showing primitive elements of all the subfields of K / \mathbb{Q}. Draw the lattice of the subgroups of G and match them with the fixed fields.
(2) Determine the Galois group of $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$. Determine all the subfields of the splitting field of $f(x)$.
(3) Prove that the Galois group of $x^{p}-2$, where p is a prime, is isomorphic to the group

$$
G=\left\{\left[\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right]: a, b \in \mathbb{F}_{p} \text { and } a \neq 0\right\}
$$

(4) Let $f(x) \in \mathbb{Z}[x]$ be an irreducible quartic with Galois group S_{4} over \mathbb{Q}. Let θ be a root of $f(x)$. Show that there is no field properly contained in $\mathbb{Q}(\theta) / \mathbb{Q}$. Is $\mathbb{Q}(\theta) / \mathbb{Q}$ a Galois extension?
(5) Show that if the Galois group of a rational cubic $f(x)$ is cyclic of order 3 then $f(x)$ has only real roots.
(6) Consider the polynomial $f(x)=x^{4}-2 x^{2}-2$.
(a) Show that the roots of the quartic are
$\alpha_{1}=\sqrt{1+\sqrt{3}}, \alpha_{2}=\sqrt{1-\sqrt{3}}, \alpha_{3}=-\alpha_{1}$ and $\alpha_{4}=-\alpha_{2}$.
(b) Prove that $K_{1}=\mathbb{Q}\left(\alpha_{1}\right) \neq K_{2}=\mathbb{Q}\left(\alpha_{2}\right)$ and $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})=$ F.
(c) Show that K_{1}, K_{2} and $K_{1} K_{2}$ are Galois over F
(d) Show that $G\left(K_{1} K_{2} / F\right)$ is the Klein 4-group. Determine the automorphisms in this group.
(e) Show that the Galois group of $f(x)$ over \mathbb{Q} is dihedral of order 8.
(7) Let $\mathbb{C}(X)$ denote the rational function field in the indeterminate X over \mathbb{C}. Let $a \in \mathbb{C}$ and $\sigma_{a}: \mathbb{C}(X) \rightarrow \mathbb{C}(X)$ be the automorphism that substitutes X by $X+a$. Put $G=\left\{\sigma_{a}: a \in \mathbb{C}\right\}$. Show that $\mathbb{C}(X)^{G}=\mathbb{C}$.
(8) Suppose that the Galois group of a field extension K / F is the Klein 4 -group V_{4}. Show that K / F is biquadratic.
(9) Let $E=\mathbb{Q}(r)$ where r is a root of $f(x)=x^{3}+x^{2}-2 x-1$ in \mathbb{C}. Show that $f\left(r^{2}-2\right)=0$. Determine $G(E / \mathbb{Q})$.
(10) Let $E=\mathbb{C}(t)$ where t is a transcendental over \mathbb{C}. Let $\omega=e^{2 \pi i / 3}$. Define the \mathbb{C}-automorphisms σ and τ of E by the equations $\sigma(t)=\omega t$ and $\tau(t)=1 / t$. Show that

$$
\sigma^{3}=\tau^{2}=i d \text { and } \tau \sigma=\sigma^{-1} \tau
$$

Show that the group G of automorphisms generated by σ and τ has order 6 and $E^{G}=\mathbb{C}\left(t^{3}+t^{-3}\right)$.
(11) Let x, y be variables. Let $a, b, c, d \in \mathbb{Z}$ and $n=|a d-b c|$. Show that $L=\mathbb{C}(x, y)$ is a Galois extension of $K=\mathbb{C}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ of degree n. Find $G(L / K)$.

