Problem set 7 : Primitive elements

- (1) Let $\alpha = \sqrt[3]{2}, \zeta = (-1 + \sqrt{-3})/2$ and $\beta = \alpha \zeta$.
 - (a) Prove that for all $c \in \mathbb{Q}$, $\gamma = \alpha + c\beta$ is a root of a sextic of the form $x^6 + ax^3 + b$.
 - (b) Prove that $irr(\alpha + \beta, \mathbb{Q})$ is cubic.
 - (c) Prove that $\operatorname{irr}(\alpha \beta, \mathbb{Q})$ is sextic.
- (2) Let $\alpha = \sqrt[3]{2}$, and $\omega = e^{2\pi i/3}$. Show that $\omega + c\alpha$ is a primitive element of $\mathbb{Q}(\alpha, \omega)$ for all $c \in \mathbb{Q}^{\times}$.
- (3) Let $\omega = e^{2\pi i/3}$. Show that $\omega\sqrt{5}$ is a primitive element of $\mathbb{Q}(\omega,\sqrt{5})$.
- (4) Let F be a subfield of \mathbb{C} and $a, b \in \mathbb{C}$ be algebraic elements over F. Show that there exist an integer n such that a + nb is a primitive element of the field K = F(a, b).
- (5) Find infinitely many primitive elements of the field $\mathbb{Q}(a,\omega)$ where a is a root of $x^3 x + 1$.
- (6) Construct infinitely many intermediate subfields of $\mathbb{F}_p(u, v)/\mathbb{F}_p(u^p, v^p)$ where u, v are indeterminates.
- (7) Find a primitive element of \mathbb{F}_{2^4} over \mathbb{F}_2 .
- (8) Find a primitive element of the field extension $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$.
- (9) Let K/F be a finite separable extension of degree n. Using the primitive element theorem show that there are exactly n distinct embeddings of K into an algebraic closure F^a of F.