Problem set 7 : Primitive elements
(1) Let $\alpha=\sqrt[3]{2}, \zeta=(-1+\sqrt{-3}) / 2$ and $\beta=\alpha \zeta$.
(a) Prove that for all $c \in \mathbb{Q}, \gamma=\alpha+c \beta$ is a root of a sextic of the form $x^{6}+a x^{3}+b$.
(b) Prove that $\operatorname{irr}(\alpha+\beta, \mathbb{Q})$ is cubic.
(c) Prove that $\operatorname{irr}(\alpha-\beta, \mathbb{Q})$ is sextic.
(2) Let $\alpha=\sqrt[3]{2}$, and $\omega=e^{2 \pi i / 3}$. Show that $\omega+c \alpha$ is a primitive element of $\mathbb{Q}(\alpha, \omega)$ for all $c \in \mathbb{Q}^{\times}$.
(3) Let $\omega=e^{2 \pi i / 3}$. Show that $\omega \sqrt{5}$ is a primitive element of $\mathbb{Q}(\omega, \sqrt{5})$.
(4) Let F be a subfield of \mathbb{C} and $a, b \in \mathbb{C}$ be algebraic elements over F. Show that there exist an integer n such that $a+n b$ is a primitive element of the field $K=F(a, b)$.
(5) Find infinitely many primitive elements of the field $\mathbb{Q}(a, \omega)$ where a is a root of $x^{3}-x+1$.
(6) Construct infinitely many intermediate subfields of $\mathbb{F}_{p}(u, v) / \mathbb{F}_{p}\left(u^{p}, v^{p}\right)$ where u, v are indeterminates.
(7) Find a primitive element of $\mathbb{F}_{2^{4}}$ over \mathbb{F}_{2}.
(8) Find a primitive element of the field extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
(9) Let K / F be a finite separable extension of degree n. Using the primitive element theorem show that there are exactly n distinct embeddings of K into an algebraic closure F^{a} of F.

