Problem set 6 : Finite Fields

- (1) Identify the finite fields $\mathbb{Z}[i]/(1+i)$ and $\mathbb{Z}[i]/(2+i)$.
- (2) Let $f(x) \in \mathbb{Z}[x]$ be irreducible of degree m. Let f(x) have a root $r \in \mathbb{F}_{p^n}$. Show that the roots of f(x) are precisely $r^p, r^{p^2}, \ldots, r^{p^n} = r$.
- (3) Find a necessary and sufficient condition on n and m so that \mathbb{F}_{p^n} is a subfield of \mathbb{F}_{p^m} .
- (4) Show that $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}] = n/m$ if $m \mid n$.
- (5) Factorize $x^8 x$ into irreducible polynomials over \mathbb{F}_2 .
- (6) Let I denote the ideal $(X^3 + 2X + 1)\mathbb{F}_3[X]$ and let x denote the residue class X + I in the field $K = \mathbb{F}_3[X]/I$. Show that x generates the cyclic group K^{\times} .
- (7) Let I denote the ideal $(X^3 + 2X + 2)\mathbb{F}_3[X]$ and x denote the residue class X + I in the field $K = \mathbb{F}_3[X]/I$. Show that x does not generate the cyclic group K^{\times} . Find a generator of K^{\times} .
- (8) Prove that the rings $\mathbb{F}_3[x]/(x^2 + x + 2)$ and $\mathbb{F}_3[x]/(x^2 + 2x + 2)$ are isomorphic. Construct an isomorphism.
- (9) Draw subfields lattices of the finite fields $\mathbb{F}_{3^{18}}$ and $\mathbb{F}_{2^{30}}$.
- (10) Let f(x) be a separable polynomial in $\mathbb{F}_p[x]$. Show that there exists an *n* such that $f(x) \mid x^{p^n} - x$.
- (11) Show that the order of the Frobenius automorphism $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is n.
- (12) Show that no finite field is algebraically closed.
- (13) Show that the field $\cup_{n=0}^{\infty} \mathbb{F}_{p^{n!}}$ is an algebraic closure of \mathbb{F}_p .
- (14) Let K and L be subfields of \mathbb{F}_{p^n} having p^s and p^t elements respectively. How many elements does the field $K \cap L$ have ?
- (15) Define $f: K = \mathbb{F}_{p^n} \to K$ by $f(x) = x^2$.
 - (a) Show that f is surjective if p = 2.
 - (b) Show that the number of elements in $f(K) = (p^n + 1)/2$.
 - (c) Let α and β be nonzero elements of K Show that there exist x, y ∈ K such that αx² + βy² = −1, first for p = 2 and then for p > 2 by counting the number of elements in the sets {1 + αx² : x ∈ K} and {βy² : y ∈ K}.

- (16) Show that the product of nonzero elements of a finite field is -1. Deduce *Wilson's theorem*: If p is a prime number then $p \mid 1+(p-1)!$.
- (17) Show that every element of a finite field K can be written as a sum of two squares in K.
- (18) Let K be a finite field with q elements. Define the **zeta function**

$$Z(t) = \frac{1}{1-t} \prod_{p} \frac{1}{1-t^{\deg p}}$$

where p ranges over all monic irreducible polynomials over K. Prove that Z(t) is a rational function and determine this rational function.