Problem set 6 : Finite Fields

(1) Identify the finite fields $\mathbb{Z}[i] /(1+i)$ and $\mathbb{Z}[i] /(2+i)$.
(2) Let $f(x) \in \mathbb{Z}[x]$ be irreducible of degree m. Let $f(x)$ have a root $r \in \mathbb{F}_{p^{n}}$. Show that the roots of $f(x)$ are precisely $r^{p}, r^{p^{2}}, \ldots, r^{p^{n}}=r$.
(3) Find a necessary and sufficient condition on n and m so that $\mathbb{F}_{p^{n}}$ is a subfield of $\mathbb{F}_{p^{m}}$.
(4) Show that $\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p^{m}}\right]=n / m$ if $m \mid n$.
(5) Factorize $x^{8}-x$ into irreducible polynomials over \mathbb{F}_{2}.
(6) Let I denote the ideal $\left(X^{3}+2 X+1\right) \mathbb{F}_{3}[X]$ and let x denote the residue class $X+I$ in the field $K=\mathbb{F}_{3}[X] / I$. Show that x generates the cyclic group K^{\times}.
(7) Let I denote the ideal $\left(X^{3}+2 X+2\right) \mathbb{F}_{3}[X]$ and x denote the residue class $X+I$ in the field $K=\mathbb{F}_{3}[X] / I$. Show that x does not generate the cyclic group K^{\times}. Find a generator of K^{\times}.
(8) Prove that the rings $\mathbb{F}_{3}[x] /\left(x^{2}+x+2\right)$ and $\mathbb{F}_{3}[x] /\left(x^{2}+2 x+2\right)$ are isomorphic. Construct an isomorphism.
(9) Draw subfields lattices of the finite fields $\mathbb{F}_{3^{18}}$ and $\mathbb{F}_{2^{30}}$.
(10) Let $f(x)$ be a separable polynomial in $\mathbb{F}_{p}[x]$. Show that there exists an n such that $f(x) \mid x^{p^{n}}-x$.
(11) Show that the order of the Frobenius automorphism $\phi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ is n.
(12) Show that no finite field is algebraically closed.
(13) Show that the field $\cup_{n=0}^{\infty} \mathbb{F}_{p^{n}}$ is an algebraic closure of \mathbb{F}_{p}.
(14) Let K and L be subfields of $\mathbb{F}_{p^{n}}$ having p^{s} and p^{t} elements respectively. How many elements does the field $K \cap L$ have ?
(15) Define $f: K=\mathbb{F}_{p^{n}} \rightarrow K$ by $f(x)=x^{2}$.
(a) Show that f is surjective if $p=2$.
(b) Show that the number of elements in $f(K)=\left(p^{n}+1\right) / 2$.
(c) Let α and β be nonzero elements of K Show that there exist $x, y \in K$ such that $\alpha x^{2}+\beta y^{2}=-1$, first for $p=2$ and then for $p>2$ by counting the number of elements in the sets $\left\{1+\alpha x^{2}\right.$: $x \in K\}$ and $\left\{\beta y^{2}: y \in K\right\}$.
(16) Show that the product of nonzero elements of a finite field is -1 . Deduce Wilson's theorem: If p is a prime number then $p \mid 1+(p-1)!$.
(17) Show that every element of a finite field K can be written as a sum of two squares in K.
(18) Let K be a finite field with q elements. Define the zeta function

$$
Z(t)=\frac{1}{1-t} \prod_{p} \frac{1}{1-t^{\operatorname{deg} p}}
$$

where p ranges over all monic irreducible polynomials over K. Prove that $Z(t)$ is a rational function and determine this rational function.

