Problem set 5 : Separable Extensions

Notation: Throughout these exercises, $F \subset K \subset L$ is a tower of fields. Assume that char F = p > 0 in the problems 4-10.

- (1) Let char F = 0 and $f(x) \in F[x]$ be a monic polynomial of positive degree. Let d(x) = (f(x), f'(x)). Show that g(x) = f(x)/d(x) has same roots as f(x) and g(x) is separable.
- (2) Let $a \in L$ be separable over F. Show that a is separable over K.
- (3) Show that an algebraic extension of a perfect field is perfect.
- (4) Let $f(x) = x^{p^n} a \in F[x]$ where n is a positive integer. Show that f(x) is irreducible over F if and only if $a \notin F^p$.
- (5) Let ([K:F], p) = 1. Show that K is a separable algebraic extension of F.
- (6) Show that $\bigcap_{i=0}^{\infty} F^{p^i}$ is the largest perfect subfield of F.
- (7) Let f(x) ∈ F[x] be irreducible. Show that there exists an irreducible separable polynomial g(x) ∈ F[x] and a positive integer e such that f(x) = g(x^{p^e}). Show that all roots of f(x) have same multiplicity p^e.
- (8) A polynomial f(x) ∈ F[x] is called a p polynomial if it is of the form x^{p^m} + a₁x^{p^{m-1}} + ··· + a_mx. Show that a monic polynomial of positive degree is a p-polynomial if and only if its roots form a finite subgroup of the additive group of a splitting field of f(x) over F and every root has same multiplicity p^e.
- (9) Let t be an indeterminate. Show that the field extension $F(t)/F(t^p)$ is not separable.
- (10) Let $K = \mathbb{F}_p(t, w)$ be the rational function field in two indeterminates t, w over \mathbb{F}_p . Let L be the splitting field over K of the polynomial h(x) = f(x)g(x) where $f(x) = x^p t$ and $g(x) = x^p w$. Prove the following:
 - (a) f and g are irreducible over K.
 - (b) $[L:K] = p^2$.
 - (c) L/K is not separable.
 - (d) $a^p \in K$ for all $a \in L$.