Problem set 5 : Separable Extensions

Notation: Throughout these exercises, $F \subset K \subset L$ is a tower of fields. Assume that char $F=p>0$ in the problems 4-10.
(1) Let char $F=0$ and $f(x) \in F[x]$ be a monic polynomial of positive degree. Let $d(x)=\left(f(x), f^{\prime}(x)\right)$. Show that $g(x)=f(x) / d(x)$ has same roots as $f(x)$ and $g(x)$ is separable.
(2) Let $a \in L$ be separable over F. Show that a is separable over K.
(3) Show that an algebraic extension of a perfect field is perfect.
(4) Let $f(x)=x^{p^{n}}-a \in F[x]$ where n is a positive integer. Show that $f(x)$ is irreducible over F if and only if $a \notin F^{p}$.
(5) Let $([K: F], p)=1$. Show that K is a separable algebraic extension of F.
(6) Show that $\cap_{i=0}^{\infty} F^{p^{i}}$ is the largest perfect subfield of F.
(7) Let $f(x) \in F[x]$ be irreducible. Show that there exists an irreducible separable polynomial $g(x) \in F[x]$ and a positive integer e such that $f(x)=g\left(x^{p^{e}}\right)$. Show that all roots of $f(x)$ have same multiplicity p^{e}.
(8) A polynomial $f(x) \in F[x]$ is called a p-polynomial if it is of the form $x^{p^{m}}+a_{1} x^{p^{m-1}}+\cdots+a_{m} x$. Show that a monic polynomial of positive degree is a p-polynomial if and only if its roots form a finite subgroup of the additive group of a splitting field of $f(x)$ over F and every root has same multiplicity p^{e}.
(9) Let t be an indeterminate. Show that the field extension $F(t) / F\left(t^{p}\right)$ is not separable.
(10) Let $K=\mathbb{F}_{p}(t, w)$ be the rational function field in two indeterminates t, w over \mathbb{F}_{p}. Let L be the splitting field over K of the polynomial $h(x)=f(x) g(x)$ where $f(x)=x^{p}-t$ and $g(x)=x^{p}-w$. Prove the following:
(a) f and g are irreducible over K.
(b) $[L: K]=p^{2}$.
(c) L / K is not separable.
(d) $a^{p} \in K$ for all $a \in L$.

