Problem set 4 : Splitting Fields

(1) Let F be a field and let K be a splitting field of a polynomial $f(x) \in$ $F[x]$. Show that $[K: F] \leq n!$.
(2) Find degrees of splitting fields over \mathbb{Q} of each of the following polynomials: (a) $x^{3}-2$ (b) $x^{4}-1$ (c) $x^{4}+1$ (d) $x^{6}+1$ (e) $\left(x^{2}+1\right)\left(x^{3}-1\right)$ and (f) $x^{6}+x^{3}+1$.
(3) Find a splitting field K of $x^{3}-10$ over $\mathbb{Q}(\sqrt{2})$. Find $[K: \mathbb{Q}]$.
(4) Let p be a prime number. Show that the degree of a splitting field of $x^{p}-2$ over \mathbb{Q} is $p(p-1)$.
(5) Let $f(x) \in \mathbb{Q}[x]$ be a cubic polynomial and K be a splitting field of $f(x)$ over \mathbb{Q}. Show that $[K: \mathbb{Q}]$ is either $1,2,3$ or 6 . Provide examples in each case.
(6) Let \mathbb{F}_{q} denote a finite field with q elements. Show that for a prime number p, the finite field $\mathbb{F}_{p^{n}}$ is a splitting field over \mathbb{F}_{p} of the polynomial $f(x)=x^{p^{n}}-x$. [Hint: Show that $\mathbb{F}_{p^{n}}$ is precisely the set of roots of $f(x)$.]
(7) Let $K \subset \mathbb{C}$ be a splitting field of $f(x)=x^{3}-2$ over \mathbb{Q}. Find a complex number z such that $K=\mathbb{Q}(z)$.
(8) Let F be a field of characteristic p. Let $f(x)=x^{p}-x-c \in F[x]$. Show that either all roots of $f(x)$ lie in F or $f(x)$ is irreducible in $F[x]$. [Hint: show that if a is a root of $f(x)$ then so is $a+1$.]
(9) Let F be a field of characteristic zero and let p be an odd prime. Let $a \in F^{\times}$such that a is not a $p^{\text {th }}$ power of any element in F. Show that $f(x)=x^{p}-a$ is irreducible in $F[x]$. What can you say about the degree of a splitting field of $f(x)$ over F ?
(10) Let E be a splitting field over a field F of $f(x)$. Let K be a subfield of the field extension E / F. Let $\sigma: K \rightarrow E$ be a monomorphism such that $\sigma(a)=a$ for all $a \in F$. Such a map is called an F-embedding of K into E. Show that σ can be extended to an automorphism of E.

