Problem set 4 : Splitting Fields

- (1) Let F be a field and let K be a splitting field of a polynomial $f(x) \in F[x]$. Show that $[K:F] \leq n!$.
- (2) Find degrees of splitting fields over \mathbb{Q} of each of the following polynomials: (a) $x^3 2$ (b) $x^4 1$ (c) $x^4 + 1$ (d) $x^6 + 1$ (e) $(x^2 + 1)(x^3 1)$ and (f) $x^6 + x^3 + 1$.
- (3) Find a splitting field K of $x^3 10$ over $\mathbb{Q}(\sqrt{2})$. Find $[K : \mathbb{Q}]$.
- (4) Let p be a prime number. Show that the degree of a splitting field of $x^p 2$ over \mathbb{Q} is p(p-1).
- (5) Let f(x) ∈ Q[x] be a cubic polynomial and K be a splitting field of f(x) over Q. Show that [K : Q] is either 1, 2, 3 or 6. Provide examples in each case.
- (6) Let 𝔽_q denote a finite field with q elements. Show that for a prime number p, the finite field 𝔽_{pⁿ} is a splitting field over 𝔽_p of the polynomial f(x) = x^{pⁿ} x. [Hint: Show that 𝔽_{pⁿ} is precisely the set of roots of f(x).]
- (7) Let $K \subset \mathbb{C}$ be a splitting field of $f(x) = x^3 2$ over \mathbb{Q} . Find a complex number z such that $K = \mathbb{Q}(z)$.
- (8) Let F be a field of characteristic p. Let $f(x) = x^p x c \in F[x]$. Show that either all roots of f(x) lie in F or f(x) is irreducible in F[x]. [Hint: show that if a is a root of f(x) then so is a + 1.]
- (9) Let F be a field of characteristic zero and let p be an odd prime. Let $a \in F^{\times}$ such that a is not a p^{th} power of any element in F. Show that $f(x) = x^p a$ is irreducible in F[x]. What can you say about the degree of a splitting field of f(x) over F?
- (10) Let E be a splitting field over a field F of f(x). Let K be a subfield of the field extension E/F. Let $\sigma : K \to E$ be a monomorphism such that $\sigma(a) = a$ for all $a \in F$. Such a map is called an F-embedding of K into E. Show that σ can be extended to an automorphism of E.