Problem set 3 : Symmetric Polynomials

- (1) Write the symmetric polynomials $f(x, y, z) = x^2y^2 + y^2z^2 + z^2x^2$ and $g(x, y, z) = x^3y + xy^3 + x^3z + xz^3 + y^3z + yz^3$ in terms of elementary symmetric polynomials.
- (2) Let (f(x)) denote the discriminant of a polynomial f(x). Show that
 (a) (x³ + px + q) = -(4p³ + 27q²).
 - (a) $(x^4 + px^2 + q) = (4p^2 + 21q^2)$. (b) $(x^4 + px^2 + r) = 16r(p^2 - 4r)^2$.
 - (b) $(x + px + r) \equiv 10r(p 4r)$.
 - (c) $(x^4 + qx + r) = -27q^4 + 256r^3$.
- (3) Find the sum of 7th powers of the roots of $x^3 + px + q$.
- (4) Let $g(x) = x^3 + px + q$ where $q \neq 0$. Determine the monic polynomial whose roots are inverses of the squares of the roots of g(x).
- (5) (a) Show that $(x^n 1) = (-1)^{\binom{n}{2} + n 1} n^n$.
 - (b) Let g(x) and h(x) be monic polynomials and g(x) = (x-a)h(x). Show that $(g(x)) = h(a)^2 dis(h(x))$.
 - (c) Show that $(x^{n-1} + x^{n-2} + \dots + 1) = (-1)^{(n-1)(n+2)/2} n^{n-2}$.
- (6) Show that a polynomial $f \in S := R[x_1, x_2, ..., x_n]$ where R is a commutative ring is fixed under all the automorphisms of S induced by even permutations in S_n if and only if $f = g + \delta h$ where g and h are symmetric polynomials and $\delta = \prod_{i \le j} (x_i x_j)$.
- (7) Let $f(x) = \prod_{i=1}^{n} (x r_i)$. Show that $dis(f(x)) = (-1)^{\binom{n}{2}} \prod_{i=1}^{n} f'(r_i)$. Use this formula to show that $(\Phi_p(x)) = (-1)^{\binom{p}{2}} p^{p-2}$. Here $\Phi_p(x) =$ irr (ζ_p, \mathbb{Q}) for a prime number p.