Problem set 3 : Symmetric Polynomials

(1) Write the symmetric polynomials $f(x, y, z)=x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}$ and $g(x, y, z)=x^{3} y+x y^{3}+x^{3} z+x z^{3}+y^{3} z+y z^{3}$ in terms of elementary symmetric polynomials.
(2) Let $(f(x))$ denote the discriminant of a polynomial $f(x)$. Show that
(a) $\left(x^{3}+p x+q\right)=-\left(4 p^{3}+27 q^{2}\right)$.
(b) $\left(x^{4}+p x^{2}+r\right)=16 r\left(p^{2}-4 r\right)^{2}$.
(c) $\left(x^{4}+q x+r\right)=-27 q^{4}+256 r^{3}$.
(3) Find the sum of $7 t h$ powers of the roots of $x^{3}+p x+q$.
(4) Let $g(x)=x^{3}+p x+q$ where $q \neq 0$. Determine the monic polynomial whose roots are inverses of the squares of the roots of $g(x)$.
(5) (a) Show that $\left(x^{n}-1\right)=(-1)^{\binom{n}{2}+n-1} n^{n}$.
(b) Let $g(x)$ and $h(x)$ be monic polynomials and $g(x)=(x-a) h(x)$. Show that $(g(x))=h(a)^{2} \operatorname{dis}(h(x))$.
(c) Show that $\left(x^{n-1}+x^{n-2}+\cdots+1\right)=(-1)^{(n-1)(n+2) / 2} n^{n-2}$.
(6) Show that a polynomial $f \in S:=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where R is a commutative ring is fixed under all the automorphisms of S induced by even permutations in S_{n} if and only if $f=g+\delta h$ where g and h are symmetric polynomials and $\delta=\prod_{i \leq j}\left(x_{i}-x_{j}\right)$.
(7) Let $f(x)=\prod_{i=1}^{n}\left(x-r_{i}\right)$. Show that $\operatorname{dis}(f(x))=(-1)^{\binom{n}{2}} \prod_{i=1}^{n} f^{\prime}\left(r_{i}\right)$. Use this formula to show that $\left(\Phi_{p}(x)\right)=(-1)^{\binom{p}{2}} p^{p-2}$. Here $\Phi_{p}(x)=$ $\operatorname{irr}\left(\zeta_{p}, \mathbb{Q}\right)$ for a prime number p.

