(1) Let E / F be a finite extension of finite fields. Show that $N_{E / F}$: $E^{\times} \rightarrow F^{\times}$is surjective.
(2) Show that a nonzero $a \in \mathbb{Q}$ is norm of an element in $\mathbb{Q}(\sqrt{-1})$ if and only if the odd primes occurring with odd multiplicities in the numerator or denominator of a written in reduced form are of the form $4 n+1$.
(3) Let p be a prime. Let F is a field having p distinct $p^{\text {th }}$ roots of unity and let $z \in F$ be a primitive $p^{t h}$ root of unity. Let E / F be cyclic of degree p^{r}. Show that if E / F can be embedded in a cyclic field K / F of degree p^{r+1} then $z=N_{E / F}(u)$ for some $u \in E$.
(4) Show that if m is a negative integer then $E=\mathbb{Q}(\sqrt{m})$ cannot be embedded in a cyclic quartic extension field over \mathbb{Q}.
(5) Let $K=\mathbb{Q}(\sqrt[n]{a})$ where $a \in \mathbb{Q}$ and $a>0$. Let $[K: \mathbb{Q}]=n$. Let E be a subfield of K / \mathbb{Q} and $[E: K]=d$. Consider $N_{K / E}(\sqrt[n]{a})$ and show that $E=\mathbb{Q}(\sqrt[d]{a})$.
(6) Let p be a prime and $K=\mathbb{Q}(z)$ where z is a primitive $p^{t h}$ root of unity. Let $G=G(K / \mathbb{Q})$. Let w be any $p^{\text {th }}$ root of unity. Show that $T r_{K / \mathbb{Q}}(w)=-1$ or $p-1$ depending on whether w is or is not a primitive $p^{\text {th }}$ root of unity.

