Problem Set 12 : Cyclic Extensions

- (1) Let E/F be a finite extension of finite fields. Show that $N_{E/F}$: $E^{\times} \to F^{\times}$ is surjective.
- (2) Show that a nonzero $a \in \mathbb{Q}$ is norm of an element in $\mathbb{Q}(\sqrt{-1})$ if and only if the odd primes occurring with odd multiplicities in the numerator or denominator of a written in reduced form are of the form 4n + 1.
- (3) Let p be a prime. Let F is a field having p distinct p^{th} roots of unity and let $z \in F$ be a primitive p^{th} root of unity. Let E/F be cyclic of degree p^r . Show that if E/F can be embedded in a cyclic field K/Fof degree p^{r+1} then $z = N_{E/F}(u)$ for some $u \in E$.
- (4) Show that if m is a negative integer then $E = \mathbb{Q}(\sqrt{m})$ cannot be embedded in a cyclic quartic extension field over \mathbb{Q} .
- (5) Let $K = \mathbb{Q}(\sqrt[n]{a})$ where $a \in \mathbb{Q}$ and a > 0. Let $[K : \mathbb{Q}] = n$. Let E be a subfield of K/\mathbb{Q} and [E : K] = d. Consider $N_{K/E}(\sqrt[n]{a})$ and show that $E = \mathbb{Q}(\sqrt[d]{a})$.
- (6) Let p be a prime and K = Q(z) where z is a primitive pth root of unity. Let G = G(K/Q). Let w be any pth root of unity. Show that Tr_{K/Q}(w) = −1 or p − 1 depending on whether w is or is not a primitive pth root of unity.