Problem Set 11 : Galois groups of Quartic Polynomials

- (1) Show that the resolvent cubic of the quartic polynomial $x^4 + px^2 + qx + r$ is $x^3 px^2 4rx + (4pr q^2)$.
- (2) Determine the Galois groups of the quartics: $x^4 2$, $x^4 + 2$, $x^4 x + 1$, $x^4 + x + 1$, $x^4 + x^3 + x^2 + x + 1$, and $x^4 + 4x^2 5$.
- (3) Show that the resolvent cubic r(x) of $f(x) = x^4 + 1$ is x(x-2)(x+2)and $G_f = V$.
- (4) Show that the Galois group of $e_4(x) = 1 + x + x^2/2 + x^3/3 + x^4/4$ is A_4 .
- (5) Show that the Galois group of an irreducible quartic in $\mathbb{Q}[x]$ with exactly two real roots is either S_4 or D_4 .
- (6) Let α be a real root of an irreducible rational quartic whose resolvent cubic is irreducible. Show that α is not constructible by ruler and compass. Can we construct the roots of the quartic x⁴ + x - 5 by ruler and compass ?
- (7) Put $f(x) = x^4 2x^2 1$. Show that f(x) is irreducible in over \mathbb{Q} . and $r(x) = (x+2)(x^2+4)$. Show that $G_f = D_4$. Find all the intermediate subfields of the splitting field K of f(x) over \mathbb{Q} . Match them with the subgroups of D_4 .
- (8) Show that the discriminants of a quartic polynomial and its resolvent cubic are equal.
- (9) Substitute x by 1/y to calculate disc $(x^4 + ax^3 + b)$.
- (10) Find sufficient conditions on the integers a, b and c so that $\mathbb{Q}(\sqrt{a+b\sqrt{c}})$ is a Galois extension of \mathbb{Q} with cyclic Galois group of order 4.