Problem set 10 : Solvability by Radicals
(1) Show that the polynomials $f(x)=x^{5}-14 x+7, \quad g(x)=x^{5}-7 x^{2}+7$ $h(x)=x^{7}-10 x^{5}+15 x+5$ and $\ell(x)=x^{5}-6 x+3$ are not solvable by radicals over \mathbb{Q}.
(2) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of prime degree p. Suppose that $f(x)$ has exactly two non-real roots. Show that $f(x)$ is not solvable by radicals over \mathbb{Q}.
(3) Let a be a positive rational number and $K=\mathbb{Q}(\sqrt[n]{a})$. Show that if n is odd then K has no notrivial subfield which is Galois over \mathbb{Q}. If n is even, show that the only nontrivial subfield of K that is Galois over \mathbb{Q} is $\mathbb{Q}(\sqrt{a})$.
(4) Let $F=\mathbb{F}_{p}$ and $K=F(x)$ be the function field in one variable x. Show that $f(x)=t^{p}-t-x \in K[t]$ is irreducible over K. Show that the Galois group of $f(x)$ over K is cyclic of order p. Is $f(x)$ solvable by radicals over K ?
(5) Let K be a subfield of \mathbb{C}. Let $p(x)=x^{3}+p x+q$ be an irreducible polynomial in $K[x]$. Let r be a root of $p(x)$. Let $u=a+b r+c r^{2} \in$ $K(r) \backslash K$. Determine $g(x):=\operatorname{irr}(u, K)$. Let $\Delta=-4 p^{3}-27 q^{2}$. Show that $K(r)$ is a radical extension of K if and only if -3Δ is a square in K.
(6) Let x_{1}, x_{2}, x_{3} be indeterminates and let s_{1}, s_{2}, s_{3} be the elementary symmetric polynomials of x_{1}, x_{2}, x_{3}. Show that $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ is not a radical extension of $\mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right)$ but $\mathbb{Q}\left(\zeta_{3}\right)\left(x_{1}, x_{2}, x_{3}\right)$ is a radical extension of $\mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right)$.
(7) Let G be the Galois group of an irreducible quintic over \mathbb{Q}. Show that $G=A_{5}$ or S_{5} if G has an element of order 3 .
(8) Is every Galois extension of degree 10 solvable by radicals ?
(9) Let ζ be a primitive $7^{\text {th }}$ root of unity and let $\alpha=\zeta+\zeta^{-1}$. Show that $f(x)=\operatorname{irr}(\alpha, \mathbb{Q})=x^{3}+x^{2}-2 x-1$. Solve for the roots of $f(x)$ to express ζ in terms of radicals over \mathbb{Q}.

