Problem set 10 : Solvability by Radicals

- (1) Show that the polynomials $f(x) = x^5 14x + 7$, $g(x) = x^5 7x^2 + 7$ $h(x) = x^7 - 10x^5 + 15x + 5$ and $\ell(x) = x^5 - 6x + 3$ are not solvable by radicals over \mathbb{Q} .
- (2) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of prime degree p. Suppose that f(x) has exactly two non-real roots. Show that f(x) is not solvable by radicals over \mathbb{Q} .
- (3) Let a be a positive rational number and K = Q(ⁿ√a). Show that if n is odd then K has no notrivial subfield which is Galois over Q. If n is even, show that the only nontrivial subfield of K that is Galois over Q is Q(√a).
- (4) Let $F = \mathbb{F}_p$ and K = F(x) be the function field in one variable x. Show that $f(x) = t^p - t - x \in K[t]$ is irreducible over K. Show that the Galois group of f(x) over K is cyclic of order p. Is f(x) solvable by radicals over K?
- (5) Let K be a subfield of \mathbb{C} . Let $p(x) = x^3 + px + q$ be an irreducible polynomial in K[x]. Let r be a root of p(x). Let $u = a + br + cr^2 \in K(r) \setminus K$. Determine $g(x) := \operatorname{irr}(u, K)$. Let $\Delta = -4p^3 - 27q^2$. Show that K(r) is a radical extension of K if and only if -3Δ is a square in K.
- (6) Let x_1, x_2, x_3 be indeterminates and let s_1, s_2, s_3 be the elementary symmetric polynomials of x_1, x_2, x_3 . Show that $\mathbb{Q}(x_1, x_2, x_3)$ is not a radical extension of $\mathbb{Q}(s_1, s_2, s_3)$ but $\mathbb{Q}(\zeta_3)(x_1, x_2, x_3)$ is a radical extension of $\mathbb{Q}(s_1, s_2, s_3)$.
- (7) Let G be the Galois group of an irreducible quintic over \mathbb{Q} . Show that $G = A_5$ or S_5 if G has an element of order 3.
- (8) Is every Galois extension of degree 10 solvable by radicals ?
- (9) Let ζ be a primitive 7th root of unity and let $\alpha = \zeta + \zeta^{-1}$. Show that $f(x) = \operatorname{irr}(\alpha, \mathbb{Q}) = x^3 + x^2 2x 1$. Solve for the roots of f(x) to express ζ in terms of radicals over \mathbb{Q} .