Problem Set 1 : Algebraic Extensions

(1) Let F be a finite field with characteristic p. Prove that $|F|=p^{n}$ for some n.
(2) Using $f(x)=x^{2}+x-1$ and $g(x)=x^{3}-x+1$, construct finite fields containing $4,8,9,27$ elements. Write down multiplication tables for the fields with 4 and 9 elements and verify that the multiplicative groups of these fields are cyclic.
(3) Determine irreducible monic polynomials over \mathbb{Q} for $1+i, 2+\sqrt{3}$, and $1+\sqrt[3]{2}+\sqrt[3]{4}$
(4) Prove that $x^{3}-2$ and $x^{3}-3$ are irreducible over $\mathbb{Q}(i)$.
(5) Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find an irreducible polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}.
(6) Determine the degree $[\mathbb{Q}(\sqrt{3+2 \sqrt{2}}): \mathbb{Q}]$.
(7) Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.
(8) Let K / F be an algebraic field extension and R be a ring such that $F \subset R \subset K$. Show that R is a field.
(9) Let K / F be an extension of degree n.
(a) For any $a \in K$, prove that the map $\mu_{a}: K \rightarrow K$ defined by $\mu_{a}(x)=a x$ for all $x \in K$, is a linear transformation of the F-vector space K. Show that K is isomorphic to a subfield of the ring $F^{n \times n}$ of $n \times n$ matrices with entries in F.
(b) Prove that a is a root of the characteristic polynomial of μ_{a}. Use this procedure to find monic polynomials satisfied by $\sqrt[3]{2}$ and $1+\sqrt[3]{2}+\sqrt[3]{4}$
(10) Let $K=\mathbb{Q}(\sqrt{d})$ for some square free integer d. Let $\alpha=a+b \sqrt{d} \in K$. Use the basis $B=\{1, \sqrt{d}\}$ of K over F and find the matrix $M_{B}^{B}\left(\mu_{\alpha}\right)$ of $\mu_{\alpha}: K \rightarrow K$ with respect to B. Prove directly that the map $a+b \sqrt{d} \mapsto M_{B}^{B}\left(\mu_{\alpha}\right)$, is an isomorphism of fields.
(11) Prove that -1 is not a sum of squares in the field $\mathbb{Q}(\beta)$ where $\beta=$ $\sqrt[3]{2} e^{2 \pi i / 3}$
(12) Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n} \in \mathbb{Z}[x]$. Suppose that $f(0)$ and $f(1)$ are odd integers. Show that $f(x)$ has no integer roots.
(13) Let R be an integral domain containing \mathbb{C}. Suppose that R is a finite dimensional \mathbb{C}-vector space. Show that $R=\mathbb{C}$.
(14) Let k be a field and x be an indeterminate. Let $y=x^{3} /(x+1)$. Find the minimal polynomial of x over $k(y)$.
(15) Find an algebraic extension K of $\mathbb{Q}(x)$ such that the polynomial

$$
f(y)=y^{2}-x^{3} /\left(x^{2}+1\right) \in \mathbb{Q}(x)[y]
$$

has a root in K.

