Problem Set 1 : Algebraic Extensions

- (1) Let F be a finite field with characteristic p. Prove that $|F| = p^n$ for some n.
- (2) Using f(x) = x² + x 1 and g(x) = x³ x + 1, construct finite fields containing 4, 8, 9, 27 elements. Write down multiplication tables for the fields with 4 and 9 elements and verify that the multiplicative groups of these fields are cyclic.
- (3) Determine irreducible monic polynomials over \mathbb{Q} for 1 + i, $2 + \sqrt{3}$, and $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- (4) Prove that $x^3 2$ and $x^3 3$ are irreducible over $\mathbb{Q}(i)$.
- (5) Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{3})$. Find an irreducible polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
- (6) Determine the degree $[\mathbb{Q}(\sqrt{3+2\sqrt{2}}):\mathbb{Q}].$
- (7) Prove that if $[F(\alpha) : F]$ is odd then $F(\alpha) = F(\alpha^2)$.
- (8) Let K/F be an algebraic field extension and R be a ring such that $F \subset R \subset K$. Show that R is a field.
- (9) Let K/F be an extension of degree n.

(a) For any $a \in K$, prove that the map $\mu_a : K \to K$ defined by $\mu_a(x) = ax$ for all $x \in K$, is a linear transformation of the *F*-vector space *K*. Show that *K* is isomorphic to a subfield of the ring $F^{n \times n}$ of $n \times n$ matrices with entries in *F*.

(b) Prove that *a* is a root of the characteristic polynomial of μ_a . Use this procedure to find monic polynomials satisfied by $\sqrt[3]{2}$ and $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

- (10) Let $K = \mathbb{Q}(\sqrt{d})$ for some square free integer d. Let $\alpha = a + b\sqrt{d} \in K$. Use the basis $B = \{1, \sqrt{d}\}$ of K over F and find the matrix $M_B^B(\mu_\alpha)$ of $\mu_\alpha : K \to K$ with respect to B. Prove directly that the map $a + b\sqrt{d} \mapsto M_B^B(\mu_\alpha)$, is an isomorphism of fields.
- (11) Prove that -1 is not a sum of squares in the field $\mathbb{Q}(\beta)$ where $\beta = \sqrt[3]{2} e^{2\pi i/3}$.
- (12) Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbb{Z}[x]$. Suppose that f(0) and f(1) are odd integers. Show that f(x) has no integer roots.

- (13) Let R be an integral domain containing \mathbb{C} . Suppose that R is a finite dimensional \mathbb{C} -vector space. Show that $R = \mathbb{C}$.
- (14) Let k be a field and x be an indeterminate. Let $y = x^3/(x+1)$. Find the minimal polynomial of x over k(y).
- (15) Find an algebraic extension K of $\mathbb{Q}(x)$ such that the polynomial

$$f(y) = y^2 - x^3/(x^2 + 1) \in \mathbb{Q}(x)[y]$$

has a root in K.