MA 414	Duration	Max. Marks 10
Quiz 1	40 minutes	Weightage 10 \%

(1) Show that if a regular polygon of p sides, where p is a prime number, is constructible by ruler and compass, then p is a Fermat prime. [2]
(2) Let F be a field and x be an indeterminate. Find all the intermediate fields of $F(x) / F\left(x^{p}\right)$ where p is a prime number.
(3) Let K / F be a field extension of degree n. Let $a \in K$ and $\mu_{a}: K \rightarrow K$ be the linear map $\mu_{a}(x)=a x$ for all $x \in K$. Show that a is the root of the characteristic polynomial of μ_{a}. Use this fact to find the irreducible polynomial over \mathbb{Q} of $\alpha=1+\beta+\beta^{2}$ where $\beta=\sqrt[3]{2}$. [3]
(4) Find the irreducible polynomial of $\cos 2 \pi / 11$ over \mathbb{Q} and show that it is not possible to construct a regular polygon of 11 sides by ruler and compass.

MA 414	Duration	Max. Marks 10
Quiz 2	40 minutes	Weightage 10 \%

(1) Find all the \mathbb{F}_{q}-automorphisms of $\mathbb{F}_{q^{n}}$.
[2].
(2) Find the number of monic irreducible polynomials of degree 4 over \mathbb{F}_{2} by using Gauss's formula. List these polynomials.
(3) Let $\omega=e^{2 \pi i / 3}$. Show that $\omega \sqrt{5}$ is a primitive element of $\mathbb{Q}(\omega, \sqrt{5})$ over \mathbb{Q}. Find $\operatorname{irr}(\omega \sqrt{5}, \mathbb{Q})$.
(4) Let p be a prime number and u, v, w be indeterminates over the finite field \mathbb{F}_{p}. Show that the field extension $\mathbb{F}_{p}(u, v, w) / \mathbb{F}_{p}\left(u^{p}, v^{p}, w^{p}\right)$ has no primitive element. List infinitely many subfields of the field extension $\mathbb{F}_{p}(u, v, w) / \mathbb{F}_{p}\left(u^{p}, v^{p}, w^{p}\right)$.

MA 414	Duration	Max. Marks 10
Quiz 3	40 minutes	Weightage 10 \%

(1) Find the Galois group of $f(x)=x^{3}-3 x+1$ over \mathbb{Q}.
(2) Let p be a prime number and $q=p^{n}$ for some natural number n. Show that $G\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$ is a cyclic group.
(3) Let G be a finite group of automorphisms of a field E. Show that E is a Galois extension of the subfield

$$
\begin{equation*}
E^{G}=\{a \in E \mid g(a)=a \text { for all } g \in G\} . \tag{3}
\end{equation*}
$$

Show that $G\left(E / E^{G}\right)=G$.
(4) Let t be an indeterminate and $\omega=e^{2 \pi i / 3}$. Let $E=\mathbb{C}(t)$ and $F=$ $\mathbb{C}\left(t^{3}+t^{-3}\right)$. Show that the maps σ, τ defined by $\sigma(t)=\omega t$ and $\tau(t)=$ $1 / t$ are F-automorphisms of E. Describe all the automorphims in $G(E / F)$.

MA 414	Duration	Max. Marks 10
Quiz 4	40 minutes	Weightage 10 \%

(1) Let p be a prime number and $n \in \mathbb{N}$. Show that if $p \nmid n$ then

$$
\Phi_{p n}(x)=\frac{\Phi_{n}\left(x^{p}\right)}{\Phi_{n}(x)} .
$$

(2) Show that $\mathbb{Q}\left(\sqrt{(-1)^{\binom{p}{2}} p}\right)$ is the unique quadratic extension of \mathbb{Q} in $\mathbb{Q}\left(\zeta_{p}\right)$.
(3) Let $z=\zeta_{11}$. Find the polynomial $\operatorname{irr}\left(z+z^{3}+z^{4}+z^{5}+z^{9}, \mathbb{Q}\right)$. [2]
(4) Write $G=G\left(\mathbb{Q}\left(\zeta_{15}\right) / \mathbb{Q}\right)$ as a product of two cyclic subgroups. Find all square free integers n such that $\mathbb{Q}(\sqrt{n})$ are fixed fields of subgroups of G.

MA 414	Duration	Max. Marks 10
Quiz 5	40 minutes	Weightage 10 \%

You may use the fact that the resolvent cubic of $x^{4}+b x^{2}+c x+d$ is $x^{3}-b x^{2}-4 d x-c^{2}+4 b d$.
(1) Let $f(x) \in F[x]$ be an irreducible quartic where char $F \neq 2,3$. Suppose that it has exactly two real roots. Show that $G_{f}=D_{4}$ or S_{4}.
(2) Find the Galois group of $x^{4}+1$ over \mathbb{Q}.
(3) Let $h(x) \in \mathbb{Q}[x]$ be a monic polynomial of degree n. Show that G_{h} is a transitive subgroup of S_{n} if and only if $h(x)$ is irreducible in $\mathbb{Q}[x]$.

MA 414	Duration	Max. Marks 10
Quiz 6	40 minutes	Weightage 10 \%

(1) Let x_{1}, x_{2}, x_{3} be indeterminates and let s_{1}, s_{2}, s_{3} be the elementary symmetric polynomials in x_{1}, x_{2}, x_{3}. Show that $E=\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ is not a radical extension of $F=\mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right)$. What is $G(E / F)$? [3]
(2) Find the Galois group of $p(x)=x^{5}-6 x+3$ over \mathbb{Q}. Is $p(x)$ solvable by radicals over \mathbb{Q} ?
(3) Find the Galois group of $q(x)=x^{3}-3 x+1$ over \mathbb{Q}. Is the splitting field of $q(x)$ over \mathbb{Q} a radical extension of \mathbb{Q} ?

MA 414	Duration	Max. Marks 30
Mid-Sem	2 hrs	Weightage 30 \%

Instructions: (1) E, F, K will denote fields. (2) p denotes a prime number.
(1) Let char $F=p>0$. Let $f(x) \in F[x]$ be an irreducible separable polynomial of degree d with only one root. Find $f(x)$.
(2) Let $k=\mathbb{F}_{p}$ and $k(x)$ denote the field of rational functions in the variable x with coefficients in k. Put $f(x)=x^{p}-a^{p-1} x$ where $a \in k^{\times}$. Show that the roots of $f(x)$ in the algebraic closure \bar{k} of k form an additive subgroup of \bar{k}. Find the elements of this group.
(3) Show that $x^{p^{n}}-a \in F[x]$ where char $F=p>0$ is either irreducible or $a \in F^{p}$.
(4) Describe and justify a ruler-compass construction of a regular pentagon.
(5) Let E / F be a finite algebraic extension of finite fields. Show that the set E^{\times}of nonzero elements of E is a cyclic group.
(6) Let E / F be a finite algebraic extension and $E=F(a)$ for some $a \in E$. Show that the number of intermediate subfields of E / F is finite.
(7) Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be an automorphism. Show that if $a>0$ then $\sigma(a)>0$. Find all automorphisms of \mathbb{R}.
(8) Let M be an $n \times n$ matrix with complex entries. Show that M is nilpotent if and only of the trace of M^{i} is zero for all $i=1,2, \ldots$. [4]
(9) Find the number of irreducible factors of $f(x)=x^{3^{15}}-x$ in \mathbb{F}_{3}. Let E denote a splitting field of $f(x)$ over \mathbb{F}_{3}. Draw a diagram of subfields of E / \mathbb{F}_{3}.

MA 414	Duration	Max. Marks 30
End-Sem	2 hrs	Weightage 30 \%

Instructions

(1) E, F, K will denote fields. (2) p denotes a prime number and $q=p^{n}$.
(3) Justify all statements. (4) Each question carries 3 marks.
(1) Let E / \mathbb{F}_{q} be a finite extension. Show that $N_{E / \mathbb{F}_{q}}: E^{\times} \rightarrow \mathbb{F}_{q}^{\times}$is surjective.
(2) Let F be a field of characteristic p. Let E / F be a cyclic extension of degree p. Show that E is a spliting field of $f(x)=x^{p}-x-a$ for some $a \in F$.
(3) Find the Galois group of $f(x)=x^{4}+5 x+5$ over \mathbb{Q}.
(4) Let $f(x)$ be an irreducible quintic over \mathbb{Q} with exactly two non-real roots. Find the Galois group of $f(x)$ over \mathbb{Q}.
(5) Find the cyclotomic polynomial $\Phi_{100}(x)$ and its Galois group over \mathbb{Q}.
(6) Show that a finite group G is solvable if and only if $G^{(s)}=\{1\}$ for some s.
(7) Let ζ be a primitive $7^{\text {th }}$ root of unity. Find the Galois group of the irreducible polynomial of $\zeta+\zeta^{5}$ over \mathbb{Q}.
(8) Find the discriminant of $\Phi_{p}(x)$.
(9) Show that a regular polygon of p sides is constructible by ruler and compass if and only if p is a Fermat prime.
(10) Let F be a field of characteristic $\neq 2$. Consider the quartic polynomial $f(x)=x^{4}+b x^{2}+c x+d$. Let r_{1}, r_{2}, r_{3} and r_{4} be the roots of $f(x)$ in a splitting field E of $f(x)$ over F. The resolvent cubic for $f(x)$ having roots

$$
t_{1}=r_{1} r_{2}+r_{3} r_{4}, t_{2}=r_{1} r_{3}+r_{2} r_{4}, t_{3}=r_{2} r_{3}+r_{1} r_{4},
$$

is $g(x)=x^{3}-b x^{2}-4 d x-c^{2}+4 b d$. Let $K=F\left(t_{1}, t_{2}, t_{3}\right)$. Find the Galois group $G(K / F)$.

