EXAMINATION PAPERS

MA 414	Duration	Max. Marks 10
Quiz 1	40 minutes	Weightage 10 $\%$

- (1) Show that if a regular polygon of p sides, where p is a prime number, is constructible by ruler and compass, then p is a Fermat prime. [2]
- (2) Let F be a field and x be an indeterminate. Find all the intermediate fields of $F(x)/F(x^p)$ where p is a prime number. [2]
- (3) Let K/F be a field extension of degree n. Let $a \in K$ and $\mu_a : K \to K$ be the linear map $\mu_a(x) = ax$ for all $x \in K$. Show that a is the root of the characteristic polynomial of μ_a . Use this fact to find the irreducible polynomial over \mathbb{Q} of $\alpha = 1 + \beta + \beta^2$ where $\beta = \sqrt[3]{2}$. [3]
- (4) Find the irreducible polynomial of cos 2π/11 over Q and show that it is not possible to construct a regular polygon of 11 sides by ruler and compass.

MA 414	Duration	Max. Marks 10
Quiz 2	40 minutes	Weightage 10 %

- (1) Find all the \mathbb{F}_q -automorphisms of \mathbb{F}_{q^n} . [2].
- (2) Find the number of monic irreducible polynomials of degree 4 over \mathbb{F}_2 by using Gauss's formula. List these polynomials. [2]
- (3) Let $\omega = e^{2\pi i/3}$. Show that $\omega\sqrt{5}$ is a primitive element of $\mathbb{Q}(\omega,\sqrt{5})$ over \mathbb{Q} . Find $\operatorname{irr}(\omega\sqrt{5},\mathbb{Q})$. [3]
- (4) Let p be a prime number and u, v, w be indeterminates over the finite field \mathbb{F}_p . Show that the field extension $\mathbb{F}_p(u, v, w)/\mathbb{F}_p(u^p, v^p, w^p)$ has no primitive element. List infinitely many subfields of the field extension $\mathbb{F}_p(u, v, w)/\mathbb{F}_p(u^p, v^p, w^p)$. [3]

MA 414	Duration	Max. Marks 10
Quiz 3	40 minutes	Weightage 10 %

- (1) Find the Galois group of $f(x) = x^3 3x + 1$ over \mathbb{Q} . [2]
- (2) Let p be a prime number and $q = p^n$ for some natural number n. Show that $G(\mathbb{F}_q/\mathbb{F}_p)$ is a cyclic group. [2]
- (3) Let G be a finite group of automorphisms of a field E. Show that E is a Galois extension of the subfield

$$E^G = \{ a \in E \mid g(a) = a \text{ for all } g \in G \}.$$

Show that $G(E/E^G) = G$.

(4) Let t be an indeterminate and $\omega = e^{2\pi i/3}$. Let $E = \mathbb{C}(t)$ and $F = \mathbb{C}(t^3 + t^{-3})$. Show that the maps σ, τ defined by $\sigma(t) = \omega t$ and $\tau(t) = 1/t$ are F-automorphisms of E. Describe all the automorphisms in G(E/F). [3]

MA 414	Duration	Max. Marks 10
Quiz 4	40 minutes	Weightage 10 %

(1) Let p be a prime number and $n \in \mathbb{N}$. Show that if $p \nmid n$ then

$$\Phi_{pn}(x) = \frac{\Phi_n(x^p)}{\Phi_n(x)}.$$

[2]

[3]

- (2) Show that $\mathbb{Q}\left(\sqrt{(-1)^{\binom{p}{2}}p}\right)$ is the unique quadratic extension of \mathbb{Q} in $\mathbb{Q}(\zeta_p)$. [3]
- (3) Let $z = \zeta_{11}$. Find the polynomial irr $(z + z^3 + z^4 + z^5 + z^9, \mathbb{Q})$. [2]
- (4) Write G = G(Q(ζ₁₅)/Q) as a product of two cyclic subgroups. Find all square free integers n such that Q(√n) are fixed fields of subgroups of G.

MA 414	Duration	Max. Marks 10
Quiz 5	40 minutes	Weightage 10 $\%$

You may use the fact that the resolvent cubic of $x^4 + bx^2 + cx + d$ is $x^3 - bx^2 - 4dx - c^2 + 4bd$.

- (1) Let $f(x) \in F[x]$ be an irreducible quartic where char $F \neq 2, 3$. Suppose that it has exactly two real roots. Show that $G_f = D_4$ or S_4 . [3]
- (2) Find the Galois group of $x^4 + 1$ over \mathbb{Q} . [3]
- (3) Let $h(x) \in \mathbb{Q}[x]$ be a monic polynomial of degree n. Show that G_h is a transitive subgroup of S_n if and only if h(x) is irreducible in $\mathbb{Q}[x]$. [4]

MA 414	Duration	Max. Marks 10
Quiz 6	40 minutes	Weightage 10 %

- (1) Let x_1, x_2, x_3 be indeterminates and let s_1, s_2, s_3 be the elementary symmetric polynomials in x_1, x_2, x_3 . Show that $E = \mathbb{Q}(x_1, x_2, x_3)$ is not a radical extension of $F = \mathbb{Q}(s_1, s_2, s_3)$. What is G(E/F)? [3]
- (2) Find the Galois group of $p(x) = x^5 6x + 3$ over \mathbb{Q} . Is p(x) solvable by radicals over \mathbb{Q} ? [3]
- (3) Find the Galois group of $q(x) = x^3 3x + 1$ over \mathbb{Q} . Is the splitting field of q(x) over \mathbb{Q} a radical extension of \mathbb{Q} ? [4]

MA 414	Duration	Max. Marks 30
Mid-Sem	2 hrs	Weightage 30 %

Instructions: (1) E, F, K will denote fields. (2) p denotes a prime number.

- (1) Let char F = p > 0. Let $f(x) \in F[x]$ be an irreducible separable polynomial of degree d with only one root. Find f(x). [3]
- (2) Let $k = \mathbb{F}_p$ and k(x) denote the field of rational functions in the variable x with coefficients in k. Put $f(x) = x^p a^{p-1}x$ where $a \in k^{\times}$. Show that the roots of f(x) in the algebraic closure \overline{k} of k form an additive subgroup of \overline{k} . Find the elements of this group. [3]
- (3) Show that $x^{p^n} a \in F[x]$ where char F = p > 0 is either irreducible or $a \in F^p$. [3]
- (4) Describe and justify a ruler-compass construction of a regular pentagon. [3]
- (5) Let E/F be a finite algebraic extension of finite fields. Show that the set E^{\times} of nonzero elements of E is a cyclic group. [3]
- (6) Let E/F be a finite algebraic extension and E = F(a) for some a ∈ E. Show that the number of intermediate subfields of E/F is finite.
- (7) Let $\sigma : \mathbb{R} \to \mathbb{R}$ be an automorphism. Show that if a > 0 then $\sigma(a) > 0$. Find all automorphisms of \mathbb{R} . [4]
- (8) Let M be an n × n matrix with complex entries. Show that M is nilpotent if and only of the trace of Mⁱ is zero for all i = 1, 2,
 [4]
- (9) Find the number of irreducible factors of f(x) = x^{3¹⁵} x in F₃. Let E denote a splitting field of f(x) over F₃. Draw a diagram of subfields of E/F₃.

MA 414	Duration	Max. Marks 30
End-Sem	2 hrs	Weightage 30 $\%$

Instructions

(1) E, F, K will denote fields. (2) p denotes a prime number and $q = p^n$.

- (3) Justify all statements. (4) Each question carries 3 marks.
 - (1) Let E/\mathbb{F}_q be a finite extension. Show that $N_{E/\mathbb{F}_q} : E^{\times} \to \mathbb{F}_q^{\times}$ is surjective.
 - (2) Let F be a field of characteristic p. Let E/F be a cyclic extension of degree p. Show that E is a spliting field of f(x) = x^p - x - a for some a ∈ F.
 - (3) Find the Galois group of $f(x) = x^4 + 5x + 5$ over \mathbb{Q} .
 - (4) Let f(x) be an irreducible quintic over \mathbb{Q} with exactly two non-real roots. Find the Galois group of f(x) over \mathbb{Q} .
 - (5) Find the cyclotomic polynomial $\Phi_{100}(x)$ and its Galois group over \mathbb{Q} .
 - (6) Show that a finite group G is solvable if and only if $G^{(s)} = \{1\}$ for some s.
 - (7) Let ζ be a primitive 7th root of unity. Find the Galois group of the irreducible polynomial of $\zeta + \zeta^5$ over \mathbb{Q} .
 - (8) Find the discriminant of $\Phi_p(x)$.
 - (9) Show that a regular polygon of p sides is constructible by ruler and compass if and only if p is a Fermat prime.
 - (10) Let F be a field of characteristic $\neq 2$. Consider the quartic polynomial $f(x) = x^4 + bx^2 + cx + d$. Let r_1, r_2, r_3 and r_4 be the roots of f(x) in a splitting field E of f(x) over F. The resolvent cubic for f(x) having roots

 $t_1 = r_1 r_2 + r_3 r_4, t_2 = r_1 r_3 + r_2 r_4, t_3 = r_2 r_3 + r_1 r_4,$

is $g(x) = x^3 - bx^2 - 4dx - c^2 + 4bd$. Let $K = F(t_1, t_2, t_3)$. Find the Galois group G(K/F).