Traditional Energy Systems

Introduction

 \succ For any activity involving other than muscle power a base energy and capital energy are required.


>This can be illustrated considering following two examples:

Consider a person walking between 2 points A B. the energy required will be $Fd(=m^*a^*d)$ joules.

≻Now if the person uses a car the total energy will be Etranslational+Ecapital

Where Ecapital is the energy invested in making car.

Traditional Energy Systems-1

Considering the example of energy required for ploughing a field: When a tractor is used there energy spent on Ecapital. The various relative values can be tabulated as follows:

	Eplough KWh	Ecapital KWh	Energy efficiency
Traditional farming	6000	60	90%
Modern farming	6000	60000	10%

Traditional Energy Systems-2

From above it is clear that though the energy efficiency for traditional farming is high the time required for modern farming is less.

Sources:

- The working speed for most draught animals is about 1 metre/second (3.6 km/h, 2 mph).
- ➤ A bull consumes about 3.3 Joules for each Joule of work.
- There are limitations on the performance of animals, such as sensitivity to food supply, getting sick etc.

Sustainable power of individual animals in good condition

Animal	Typical weight kN (kgf)	Pull- weight ratio	Typical pull N (kgf)	Typical working speed m/s	Power output W	Work ing hours per day	Energy output per day MJ
Ox	4.5(450)	0.11	500(50)	0.9	450	6	10
Buffalo	5.5 (50)	0.12	650 (65)	0.8	520	5	9.5
Horse	4.0 (400)	0.13	500 (50)	1.0	500	10	18
Donkey	1.5 (150)	0.13	200 (20)	1.0	200	4	3
Mule	3.0 (300)	0.13	400 (40)	1.0	400	6	8.5
Camel	5.0 (500)	0.13	650 (65)	1.0	650	6	14

Sustainable power of individual animals in good condition-2

Animal	Force Exert ed (lbs.)	Velocit y (ft/sec)	Power (ft- lbs/sec)	Standa rd Horsep ower	Force Exerted (N.)	Velocit y (m/s)	Power (W)
draft horse	120	3.6	432	0.864	535	1.1	587
OX	120	2.4	288	0.576	535	0.7	391
mule	60	3.6	216	0.432	267	1.1	293
donkey	30	3.6	108	0.216	134	1.1	147
man	18	2.5	45	0.090	80	0.8	61

Sustainable power of individual animals in good condition-3

- ➢ For a hard day's work the horse reigns supreme, delivering 500W for 10 hours. The ox is known for its compliance and is less fussy about food a good choice for the less demanding applications. The camel has the highest power output. Forget the donkey.
- <u>http://geoimages.berkeley.edu/GeoImages/Powell/Afghan/100.</u>
 <u>html</u>
- Camel powered pump in Afghanistan: For millenia waterwheels have been used to lift water for irrigation and domestic use.
- This camel keeps walking in a tight circle to turn an axle which powers the waterwheel.
- <u>http://private.addcom.de/asiaphoto/burma/bdia085.htm</u>

Power for common activities

Activities	Energy Consumed
Moving a body of unit mass with an acceleration 2m/s ² on a smooth horizontal plane	555.56x 10 ⁻⁶ Whr/kg/m
Moving a body of unit mass with an acceleration $2m/s^2$ on a horizontal plane with coefficient of friction $\mu=0.2$	1100x10 ⁻⁶ Whr/kg/m
Moving a body of unit mass with uniform velocity on a horizontal plane with coefficient of friction $\mu=0.2$	544x10 ⁻⁶ Whr/kg/m
Lifting a body of unit mass by unit height	2722x10 ⁻⁶ Whr/kg/m

Power for common activities-1

Energy required for rotating a disc of J=2kg- m^2 with an angular acceleration α =2 rad/sec ² per unit radian	1111x10 ⁻⁶ Whr
Energy required to raise the temperature of unit mass of water from 25 ⁰ to 75 ⁰	58.05 Whr/kg
Energy required to deliver water from a horizontal pipe with a delivery rate of 0.11t/sec at a pressure of 20N/m ²	555.56x 10 ⁻⁶ Whr/kg/m
Energy required to move a body up an inclined plane inclined at an angle 45° with an acceleration of $2m/s^2$ with a frictional coefficient of μ =0.2	2863x10 ⁻⁶ Whr/kg/m

Power for common activities-2

Energy required for physical activities of human being (M=68kg)

Walking at a speed of 7 km/hr for a time of 1hr	464x10 ⁻³ Whr
Running at a speed of 10 km/hr for a time of 1hr	812.7x10 ⁻³ Whr
Cycling at a speed of 16 km/hr for a time of 1hr	510.8x10 ⁻³ Whr
Swimming at a speed of 2.4 km/hr for a time of 1hr	557.33x10 ⁻³ Whr

Power for common activities-3

Energy Storage

Typical rechargeable batteries	40-100 Wh/kg
Electrochemical capacitor	5-15 Whr/kg
Spring	0.1-0.3 Whr/kg