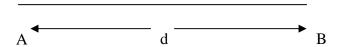
Indian Institute of Science CEDT

1. Traditional Energy Systems


Introduction

For any activity involving other than muscle power a base energy and capital energy are required. This can be illustrated considering following two examples:

Consider a person walking between 2 points A B. the energy required will be Fd(=m*a*d) joules.

Now if the person uses a car the total energy will be Etranslational+Ecapital

Where Ecapital is the energy invested in making car.

Considering the example of energy required for ploughing a field:

When a tractor is used there energy spent on Ecapital. The various relative values can be tabulated as follows:

	Eplough KWh	Ecapital KWh	Energy efficiency
Traditional farming	6000	60	90%
Modern farming	6000	60000	10%

From above it is clear that though the energy efficiency for traditional farming is high the time required for modern farming is less.

Sources

The working speed for most draught animals is about 1 metre/second (3.6 km/h, 2 mph). A bull consumes about 3.3 Joules for each Joule of work. There are limitations on the performance of animals, such as sensitivity to food supply, getting sick etc.

Sustainable power of individual animals in good condition							
Animal	Typical weight kN (kgf)	Pull- weight ratio	Typical pull N (kgf)	Typical working speed m/s		Working hours per day	Energy output per day MJ
Ox	4.5(450)	0.11	500(50)	0.9	450	6	10
Buffalo	5.5 (50)	0.12	650 (65)	0.8	520	5	9.5

Indian Institute of Science CEDT

Horse	4.0 (400)	0.13	500 (50)	1.0	500	10	18
Donkey	1.5 (150)	0.13	200 (20)	1.0	200	4	3
Mule	3.0 (300)	0.13	400 (40)	1.0	400	6	8.5
Camel	5.0 (500)	0.13	650 (65)	1.0	650	6	14

Note: For animals of different weight the power output and energy output per day may be adjusted proportionately Source: Tools for Agriculture, 1992

http://www.fao.org/sd/EGdirect/EGan0006.htm

Animal	Force Exerted (lbs.)	Velocity (ft/sec)		Standard Horsepower	Force Exerted (N.)	Velocity (m/s)	Power (W)
draft horse	120	3.6	432	0.864	535	1.1	587
ox	120	2.4	288	0.576	535	0.7	391
mule	60	3.6	216	0.432	267	1.1	293
donkey	30	3.6	108	0.216	134	1.1	147
man	18	2.5	45	0.090	80	0.8	61

http://www2.sjsu.edu/faculty/watkins/animalpower.htm Metric conversion by Tim Lovett

For a hard day's work the horse reigns supreme, delivering 500W for 10 hours. The ox is known for its compliance and is less fussy about food - a good choice for the less demanding applications. The camel has the highest power output. Forget the donkey. http://geoimages.berkeley.edu/GeoImages/Powell/Afghan/100.html

Camel powered pump in Afghanistan: For millenia waterwheels have been used to lift water for irrigation and domestic use.

This camel keeps walking in a tight circle to turn an axle which powers the waterwheel.

$\underline{http://private.addcom.de/asiaphoto/burma/bdia085.htm}$

An ox crushes peanuts on a tiny mill in Thailand. Note the two arms - one steering the animal at the neck, while the other takes the power from behind the animal.

Power for common activities

	Energy Consumed
Activities	
Moving a body of unit mass with an acceleration 2m/s ² on a smooth horizontal plane	555.56x 10 ⁻⁶ Whr/kg/m
Moving a body of unit mass with an acceleration 2m/s^2 on a horizontal plane with coefficient of friction μ =0.2	1100x10 ⁻⁶ Whr/kg/m
Moving a body of unit mass with uniform velocity on a horizontal	544x10 ⁻⁶

Indian Institute of Science CEDT

plane with coefficient of friction µ=0.2	Whr/kg/m
Lifting a body of unit mass by unit height	2722x10 ⁻⁶
	Whr/kg/m
Energy required for rotating a disc of J=2kg-m² with an angular acceleration α =2 rad/sec² per unit radian	1111x10 ⁻⁶ Whr
Energy required to raise the temperature of unit mass of water from 25^0 to 75^0	58.05 Whr/kg
Energy required to deliver water from a horizontal pipe with a delivery rate of $0.11t/\text{sec}$ at a pressure of $20N/\text{m}^2$	555.56x 10 ⁻⁶ Whr/kg/m
Energy required to move a body up an inclined plane inclined at an	2863x10 ⁻⁶
angle 45° with an acceleration of 2m/s^2 with a frictional coefficient of μ =0.2	Whr/kg/m
Energy required for physical activities of human being (M=68kg)	
Walking at a speed of 7 km/hr for a time of 1hr	464x10 ⁻³ Whr
Running at a speed of 10 km/hr for a time of 1hr	812.7x10 ⁻³ Whr
Cycling at a speed of 16 km/hr for a time of 1hr	510.8x10 ⁻³ Whr
Swimming at a speed of 2.4 km/hr for a time of 1hr	557.33x10 ⁻³ Whr
Energy Storage	
Typical rechargeable batteries	40-100 Wh/kg
Electrochemical capacitor	5-15 Whr/kg
Spring	0.1-0.3 Whr/kg

Reference:

- 1. www.brainmac.demon.co.uk
- 2. www.spi.auburn.edu\prospector