
 
 
 
 
 
 
 
 

Module 
6 

 

Embedded System 
Software 

Version 2 EE IIT, Kharagpur 1



 
 
 
 
 
 
 
 
 

Lesson 
29 

 

Real-Time Task 
Scheduling – Part 1 

Version 2 EE IIT, Kharagpur 2



Specific Instructional Objectives 
 
At the end of this lesson, the student would be able to: 

• Understand the basic terminologies associated with Real-Time task scheduling 

• Classify the Real-Time tasks with respect to their recurrence 

• Get an overview of the different types of schedulers 

• Get an overview of the various ways of  classifying scheduling algorithms 

• Understand the logic of clock-driven scheduling 

• Get an overview of table-driven schedulers 

• Get an overview of cyclic schedulers 

• Work out problems related to table-driven and cyclic schedulers 

• Understand how a generalized task scheduler would be 

• Compare table-driven and cyclic schedulers 
 
1. Real-Time Task Scheduling 

 
In  the  last  Chapter  we  defined  a  real-time  task  as  one  that  has  some  constraints  

associated  with  it.   Out  of the  three  broad  classes  of  time  constraints  we  discussed,  
deadline  constraint  on  tasks  is  the  most  common.  In all subsequent discussions we therefore 
implicitly assume only deadline constraints on real-time tasks, unless we mention otherwise. 

Real-time tasks get generated in response to some events that may either be external or 
internal to the system. For  example,  a  task  might  get  generated  due  to  an  internal  event  
such  as  a  clock  interrupt  occurring  every  few milliseconds  to  periodically  poll  the  
temperature  of  a  chemical  plant.   Another task might get generated due to an external event 
such as the user pressing a switch.  When a task gets generated, it is said to have arrived or got 
released.  Every real-time system usually consists of a number of real-time tasks.  The time 
bounds on different tasks may be different.  We had already pointed out that the consequences of 
a task missing its time bounds may also vary from task to task.  This is often expressed as the 
criticality of a task. 

In  the  last  Chapter,  we  had  pointed  out  that  appropriate  scheduling  of  tasks  is  the  
basic  mechanism  adopted by a real-time operating system to meet the time constraints of a task.  
Therefore, selection of an appropriate task scheduling  algorithm  is  central  to  the  proper  
functioning  of  a  real-time  system.   In  this  Chapter  we  discuss  some fundamental  task  
scheduling  techniques  that  are  available.   An understanding of these techniques would  help  
us not only to satisfactorily design a real-time application, but also understand and appreciate the 
features of modern commercial real-time operating systems discussed in later chapters. 

This chapter is organized as follows.  We first introduce some basic concepts and 
terminologies associated with task scheduling.  Subsequently,  we  discuss  two  major  classes  
of  task  schedulers:  clock-driven  and  event-driven.  Finally, we explain some important issues 
that must be considered while developing practical applications. 

 
 
 

Version 2 EE IIT, Kharagpur 3



1.1. Basic Terminologies 
 
In this section we introduce a few important concepts and terminologies which would be 

useful in understanding the rest of this Chapter. 
 
Task Instance:  Each time an event occurs, it triggers the task that handles this event to run.  

In other words, a task is generated when some specific event occurs.  Real-time tasks therefore 
normally recur a large number of times at different instants of time depending on the event 
occurrence times.  It is possible that real-time tasks recur at random instants.  However, most 
real-time tasks recur with certain fixed periods.  For example, a temperature sensing task in a 
chemical plant might recur indefinitely with a certain period because the temperature is sampled 
periodically, whereas a task handling a device interrupt might recur at random instants.  Each 
time a task recurs, it is called an instance of the task.   The  first  time  a  task  occurs,  it  is  
called  the  first  instance  of  the  task.   The next occurrence of the task is called its second 
instance, and so on.  The jth instance of a task Ti would be denoted as Ti(j).  Each instance  of  a  
real-time  task  is  associated  with  a  deadline  by  which  it  needs  to  complete  and  produce  
results. We shall at times refer to task instances as processes and use these two terms 
interchangeably when no confusion arises. 

 

 

 

 

 

 

 

 

Absolute deadline of Ti (1) 
 = Φ + d 

Relative
deadline of Ti(1) 

= d 

Deadline of Ti (1) Arrival of Ti (1) 

Ti(1) Ti(2) 
Φ + pi 

Φ + d 
Φ 

Fig. 29.1 Relative and Absolute Deadlines of a Task  

0 

 
Relative  Deadline  versus  Absolute  Deadline: The  absolute  deadline  of  a  task  is  the  

absolute  time  value (counted  from  time  0)  by  which  the  results  from  the  task  are  
expected.   Thus, absolute deadline is equal to the interval of time between the time 0 and the 
actual instant at which the deadline occurs as measured by some physical clock.  Whereas, 
relative deadline is the time interval between the start of the task and the instant at which 
deadline occurs.   In  other  words,  relative  deadline  is  the  time  interval  between  the  arrival  
of  a  task  and  the  corresponding deadline.  The  difference  between  relative  and  absolute  
deadlines  is  illustrated  in  Fig. 29.1.  It can be observed from Fig. 29.1 that the relative deadline 
of the task Ti(1) is d, whereas its absolute deadline is φ + d. 

 
Response Time:  The response time of a task is the time it takes (as measured from the task 

arrival time) for the task to produce its results.  As already remarked, task instances get generated 

Version 2 EE IIT, Kharagpur 4



due to occurrence of events. These events may be internal to the system, such as clock interrupts, 
or external to the system such as a robot encountering an obstacle. 

 

 
  

The response time is the time duration from the occurrence of the event generating the task to 
the time the task produces its results. 

For hard real-time tasks, as long as all their deadlines are met, there is no special advantage 
of completing the tasks early.  However, for soft real-time tasks, average response time of tasks 
is an important metric to measure the performance of a scheduler. A  scheduler  for  soft  real-
time  tasks  should  try  to  execute  the  tasks  in  an  order  that minimizes the average response 
time of tasks. 

 
Task Precedence:  A task is said to precede another task, if the first task must complete 

before the second task can start.  When a task Ti precedes another task Tj, then each instance of 
Ti precedes the corresponding instance of Tj. That is, if T1 precedes T2, then T1(1) precedes 
T2(1),  T1(2) precedes T2(2), and so on.  A precedence order defines a partial order among tasks.  
Recollect  from  a  first  course  on  discrete  mathematics  that  a  partial  order  relation  is 
reflexive,  antisymmetric,  and  transitive. An example partial ordering among tasks is shown in 
Fig.  29.2.   Here T1 precedes T2, but we cannot relate T1 with either T3 or T4. We shall later 
use task precedence relation to develop appropriate task scheduling algorithms. 

 

 

 

 

 

 

T1 
T2 

T3  T4 

Fig. 29.2 Precedence Relation among Tasks 
 
Data Sharing:  Tasks often need to share their results among each other when one task needs 

to share the results produced by another task; clearly, the second task must precede the first task.  
In fact, precedence relation between two tasks sometimes implies data sharing between the two 
tasks (e.g. first task passing some results to the second task).   However, this is not always true.   
A  task  may  be  required  to  precede  another  even  when  there  is  no  data sharing.  For 
example, in a chemical plant it may be required that the reaction chamber must be filled with 
water before chemicals are introduced. In  this  case,  the  task  handling  filling  up  the  reaction  
chamber  with  water  must complete,  before  the  task  handling  introduction  of  the  chemicals  
is  activated. It is therefore not appropriate to represent data sharing using precedence relation.  
Further, data sharing may occur not only when one task precedes the other, but might occur 
among truly concurrent tasks, and overlapping tasks.  In other words, data sharing among tasks 
does not necessarily impose any particular ordering among tasks. Therefore, data sharing relation 
among tasks needs to be represented using a different symbol. We shall represent data sharing 
among two tasks using a dashed arrow.  In the example of data sharing among tasks represented 
in Fig.  29.2, T2 uses the results of T3, but T2 and T3 may execute concurrently. T2 may even 

Version 2 EE IIT, Kharagpur 5



start executing first, after sometimes it may receive some data from T3, and continue its 
execution, and so on. 

 
1.2. Types  of  Real-Time  Tasks  

 
Based on the way real-time tasks recur over a period of time, it is possible to classify them 

into three main categories: periodic, sporadic, and aperiodic tasks.  In the following, we discuss 
the important characteristics of these three major categories of real-time tasks. 

  
Periodic Task:  A periodic task is one that repeats after a certain fixed time interval. The 

precise time instants at which periodic tasks recur are usually demarcated by clock interrupts.  
For this reason, periodic tasks are sometimes referred to as clock-driven tasks.  The fixed time 
interval after which a task repeats is called the period of the task. If Ti is a periodic task, then the 
time from 0 till the occurrence of the first instance of Ti (i.e.  Ti(1)) is denoted by φi,  and is 
called the phase of the task.  The second instance (i.e. Ti(2)) occurs at φi + pi.  The third instance 
(i.e. Ti(3)) occurs at φi + 2 ∗  pi  and so on.  Formally, a periodic task Ti  can be represented by a 
4 tuple (φi,  pi,  ei,  di) where pi  is the period of task, ei  is the worst case execution time of the 
task, and di  is the relative deadline of the task.  We shall use this notation extensively in future 
discussions. 

  

 

 

 

 

 

 

 
To  illustrate  the  above  notation  to  represent  real-time  periodic  tasks,  let  us  consider  

the  track  correction  task typically found in a rocket control software.  Assume the following 
characteristics of the track correction task.  The track correction task starts 2000 milliseconds 
after the launch of the rocket, and recurs periodically every 50 milliseconds then on. Each 
instance of the task requires a processing time of 8 milliseconds and its relative deadline is 50 
milliseconds.  Recall that the phase of a task is defined by the occurrence time of the first 
instance of the task. Therefore, the phase of this task is 2000 milliseconds. This task can formally 
be represented as (2000 mSec, 50 mSec, 8 mSec, 50 mSec). This task is pictorially shown in Fig. 
29.3. When the deadline of a task equals its period (i.e. pi=di), we can omit the fourth tuple. In 
this case, we can represent the task as Ti= (2000 mSec, 50 mSec, 8 mSec). This would 
automatically mean pi=di=50 mSec. Similarly, when φi = 0, it can be omitted when no confusion 
arises.  So, Ti = (20mSec; 100mSec) would indicate a task with φi = 0, pi=100mSec, ei=20mSec, 
and di=100mSec.  Whenever there is any scope for confusion, we shall explicitly write out the 
parameters Ti = (pi=50 mSecs, ei  = 8 mSecs, di = 40 mSecs), etc. 

Φ Φ + pi Φ + 2*pi 

Φ = 2000 di 

ei 

0 

Fig. 29.3 Track Correction Task (2000mSec; pi; ei; di) of a Rocket 

Version 2 EE IIT, Kharagpur 6



A vast majority of the tasks present in a typical real-time system are periodic.  The reason for 
this is that many activities carried out by real-time systems are periodic in nature, for example 
monitoring certain conditions, polling information  from  sensors  at  regular  intervals  to  carry  
out  certain  action  at  regular  intervals  (such  as  drive  some actuators).   We  shall  consider  
examples  of  such  tasks  found  in  a  typical  chemical  plant.   In  a  chemical  plant  several 
temperature monitors, pressure monitors, and chemical concentration monitors periodically 
sample the current temperature, pressure, and chemical concentration values which are then 
communicated to the plant controller.  The instances of the temperature, pressure, and chemical 
concentration monitoring tasks normally get generated through the interrupts received from a 
periodic timer.  These inputs are used to compute corrective actions required to maintain the 
chemical reaction at a certain rate.  The corrective actions are then carried out through actuators. 

 
Sporadic Task:  A sporadic task is one that recurs at random instants.  A sporadic task Ti  

can be is represented by a three tuple:  
Ti  = (ei, gi, di) 

where ei  is the worst case execution time of an instance of the task, gi  denotes the minimum 
separation between two consecutive instances of the task, di  is the relative deadline.  The 
minimum separation (gi) between two consecutive instances of the task implies that once an 
instance of a sporadic task occurs, the next instance cannot occur before gi  time units have 
elapsed.   That  is,  gi   restricts  the  rate  at  which  sporadic  tasks  can  arise.   As done for 
periodic tasks, we shall use the convention that the first instance of a sporadic task Ti is denoted 
by Ti(1) and the successive instances by Ti(2), Ti(3), etc. 

Many sporadic tasks such as emergency message arrivals are highly critical in nature.  For 
example, in a robot a task that gets generated to handle an obstacle that suddenly appears is a 
sporadic task.  In a factory, the task that handles fire conditions is a sporadic task.  The time of 
occurrence of these tasks can not be predicted. 

The  criticality  of  sporadic  tasks  varies  from  highly  critical  to  moderately  critical.  For  
example,  an  I/O  device interrupt,  or  a  DMA  interrupt  is  moderately  critical.   However, a  
task  handling  the  reporting  of  fire  conditions  is highly critical. 

 
Aperiodic Task:  An aperiodic task is in many ways similar to a sporadic task.  An aperiodic 

task can arise at random instants.  However, in case of an aperiodic task, the minimum separation 
gi between two consecutive instances can be 0.   That  is,  two  or  more  instances  of  an  
aperiodic  task  might  occur  at  the  same  time  instant.   Also, the deadline for an aperiodic 
tasks is expressed as either an average value or is expressed statistically.  Aperiodic tasks are 
generally soft real-time tasks. 

It  is  easy  to  realize  why  aperiodic  tasks  need  to  be  soft  real-time  tasks.  Aperiodic 
tasks can recur in quick succession. It  therefore  becomes  very  difficult  to  meet  the  deadlines  
of  all  instances  of  an  aperiodic  task. When several aperiodic tasks recur in a quick 
succession, there is a bunching of the task instances and it might lead to a few deadline misses.  
As already discussed, soft real-time tasks can tolerate a few deadline misses. An example of an 
aperiodic task is a logging task in a distributed system. The logging task can be started by 
different tasks running on different nodes.  The logging requests from different tasks may arrive 
at the logger almost at the same time, or the requests may be spaced out in time. Other examples 
of aperiodic tasks include operator requests, keyboard presses, mouse movements, etc.  In fact, 
all interactive commands issued by users are handled by aperiodic tasks. 

 
 

Version 2 EE IIT, Kharagpur 7



1.3. Task  Scheduling 
 
Real-time task scheduling essentially refers to determining the order in which the various 

tasks are to be taken up for execution by the operating system.  Every operating system relies on 
one or more task schedulers to prepare the schedule of execution of various tasks it needs to run.  
Each task scheduler is characterized by the scheduling algorithm it employs.  A large number of 
algorithms for scheduling real-time tasks have so far been developed.  Real-time task scheduling 
on uniprocessors is a mature discipline now with most of the important results having been 
worked out in the early 1970’s.  The  research  results  available  at  present  in  the  literature  
are  very  extensive  and  it  would indeed be grueling to study them exhaustively.  In this text, 
we therefore classify the available scheduling algorithms into a few broad classes and study the 
characteristics of a few important ones in each class. 

 
1.3.1. A Few  Basic Concepts 

 
Before  focusing  on  the  different  classes  of  schedulers  more  closely,  let  us  first  

introduce a  few  important  concepts and terminologies which would be used in our later 
discussions. 

 
Valid Schedule:  A valid schedule for a set of tasks is one where at most one task is assigned 

to a processor at a time, no task is scheduled before its arrival time, and the precedence and 
resource constraints of all tasks are satisfied. 

 
Feasible Schedule:  A valid schedule is called a feasible schedule, only if all tasks meet their 

respective time constraints in the schedule. 
 
Proficient Scheduler:  A task scheduler sch1 is said to be more proficient than another 

scheduler sch2, if sch1 can feasibly schedule all task sets that sch2 can feasibly schedule, but not 
vice versa.  That is, sch1 can feasibly schedule all task sets that sch2 can, but there exists at least 
one task set that sch2 can not feasibly schedule, whereas sch1 can.  If sch1 can feasibly schedule 
all task sets that sch2 can feasibly schedule and vice versa, then sch1 and sch2 are called equally 
proficient schedulers. 

 
Optimal Scheduler:  A real-time task scheduler is called optimal, if it can feasibly schedule 

any task set that can be feasibly scheduled by any other scheduler. In  other  words,  it  would  
not  be  possible  to  find  a  more  proficient scheduling  algorithm  than  an  optimal  scheduler.  
If  an  optimal  scheduler  can  not  schedule  some  task  set,  then  no other scheduler should be 
able to produce a feasible schedule for that task set. 

 
Scheduling Points:  The scheduling points of a scheduler are the points on time line at which 

the scheduler makes decisions regarding which task is to be run next.  It is important to note that 
a task scheduler does not need to run continuously, it is activated by the operating system only at 
the scheduling points to make the scheduling decision as to which task to be run next.  In a 
clock-driven scheduler, the scheduling points are defined at the time instants marked by 
interrupts generated by a periodic timer.  The scheduling points in an event-driven scheduler are 
determined by occurrence of certain events. 

 

Version 2 EE IIT, Kharagpur 8



Preemptive Scheduler: A preemptive scheduler is one which when a higher priority task 
arrives, suspends any lower priority task that may be executing and takes up the higher priority 
task for execution. Thus, in a preemptive scheduler, it can not be the case that a higher priority 
task is ready and waiting for execution, and the lower priority task is executing.  A preempted 
lower priority task can resume its execution only when no higher priority task is ready. 

 
Utilization: The processor utilization (or simply utilization) of a task is the average time for 

which it executes per unit time interval. In notations: for a periodic task Ti, the utilization ui = 
ei/pi, where ei is the execution time and pi is the period of Ti. For a set of periodic tasks {Ti}: the 
total utilization due to all tasks U = i=1∑

 n ei/pi. It is the objective of any good scheduling 
algorithm to feasibly schedule even those task sets that have very high utilization, i.e. utilization 
approaching 1. Of course, on a uniprocessor it is not possible to schedule task sets having 
utilization more than 1. 

 
Jitter:   Jitter  is  the  deviation  of  a  periodic  task  from  its  strict  periodic  behavior.   The 

arrival time jitter is the deviation of the task from arriving at the precise periodic time of arrival.  
It may be caused by imprecise clocks, or other factors such as network congestions. Similarly, 
completion time jitter is the deviation of the completion of a task from precise periodic points.   
The  completion  time  jitter  may  be  caused  by  the  specific  scheduling  algorithm employed 
which takes up a task for scheduling as per convenience and the load at an instant, rather than 
scheduling at some strict time instants.  Jitters are undesirable for some applications. 

 
1.4. Classification of Real-Time Task  Scheduling Algorithms 

  
Several schemes of classification of real-time task scheduling algorithms exist.  A popular 

scheme classifies the real-time task scheduling algorithms based on how the scheduling points 
are defined.  The three main types of schedulers according to this classification scheme are:  
clock-driven, event-driven, and hybrid. 

 

 

 
 
A few important members of each of these three broad classes of scheduling algorithms are 

the following: 

The clock-driven schedulers are those in which the scheduling points are determined by the 
interrupts received from a clock. In the event-driven ones, the scheduling points are defined 
by certain events which precludes clock interrupts. The hybrid ones use both clock interrupts 
as well as event occurrences to define their scheduling points. 

1. Clock Driven 
• Table-driven 
• Cyclic 

2. Event Driven 
• Simple priority-based 
• Rate Monotonic Analysis (RMA) 
• Earliest Deadline First (EDF) 

3. Hybrid 
• Round-robin 

 

Version 2 EE IIT, Kharagpur 9



Important members of clock-driven schedulers that we discuss in this text are table-driven 
and cyclic schedulers. Clock-driven schedulers are simple and efficient.  Therefore, these are 
frequently used in embedded applications.  We investigate these two schedulers in some detail in 
Sec. 2.5. 

Important examples of event-driven schedulers are Earliest Deadline First (EDF) and Rate 
Monotonic Analysis (RMA). Event-driven schedulers are more sophisticated than clock-driven 
schedulers and usually are more proficient and flexible than clock-driven schedulers. These  are  
more  proficient  because  they  can  feasibly  schedule  some  task sets which clock-driven 
schedulers cannot. These are more flexible because they can feasibly schedule sporadic and 
aperiodic tasks in addition to periodic tasks, whereas clock-driven schedulers can satisfactorily 
handle only periodic tasks. Event-driven scheduling of real-time tasks in a uniprocessor 
environment was a subject of intense research during early 1970’s, leading to publication of a 
large number of research results.  Out of the large number of research results that were 
published, the following two popular algorithms are the essence of all those results: Earliest 
Deadline First (EDF), and Rate Monotonic Analysis (RMA). If we understand these two 
schedulers well, we would get a good grip on real-time task scheduling on uniprocessors. Several 
variations to these two basic algorithms exist. 

Another classification of real-time task scheduling algorithms can be made based upon the 
type of task acceptance test that a scheduler carries out before it takes up a task for scheduling.  
The acceptance test is used to decide whether a newly arrived task would at all be taken up for 
scheduling or be rejected.  Based on the task acceptance test used, there are two broad categories 
of task schedulers: 

• Planning-based 
• Best effort 

In planning-based schedulers, when a task arrives the scheduler first determines whether the 
task can meet its dead- lines, if it is taken up for execution.  If not, it is rejected.  If the task can 
meet its deadline and does not cause other already scheduled tasks to miss their respective 
deadlines, then the task is accepted for scheduling.  Otherwise, it is rejected.  In best effort 
schedulers, no acceptance test is applied.  All tasks that arrive are taken up for scheduling and 
best effort is made to meet its deadlines.  But, no guarantee is given as to whether a task’s 
deadline would be met. 

 A third type of classification of real-time tasks is based on the target platform on which the 
tasks are to be run. The different classes of scheduling algorithms according to this scheme are: 

• Uniprocessor 
• Multiprocessor 
• Distributed 

Uniprocessor scheduling algorithms are possibly the simplest of the three classes of 
algorithms.  In contrast to uniprocessor algorithms, in multiprocessor and distributed scheduling 
algorithms first a decision has to be made regarding which task needs to run on which processor 
and then these tasks are scheduled.  In contrast to multiprocessors, the processors in a distributed 
system do not possess shared memory.  Also in contrast to multiprocessors, there is no global up-
to-date state information available in distributed systems. This makes uniprocessor scheduling 
algorithms that assume central state information of all tasks and processors to exist unsuitable for 
use in distributed systems. Further in distributed systems, the communication among tasks is 
through message passing. Communication through message passing is costly.  This means that a 
scheduling algorithm should not incur too much communication over- head.  So carefully 
designed distributed algorithms are normally considered suitable for use in a distributed system. 
In the following sections, we study the different classes of schedulers in more detail. 

 

Version 2 EE IIT, Kharagpur 10



1.5. Clock-Driven  Scheduling 
 
Clock-driven schedulers make their scheduling decisions regarding which task to run next 

only at the clock interrupt points.  Clock-driven schedulers are those for which the scheduling 
points are determined by timer interrupts.  Clock- driven schedulers are also called off-line 
schedulers because these schedulers fix the schedule before the system starts to run.  That is, the 
scheduler pre-determines which task will run when.  Therefore, these schedulers incur very little 
run time overhead.  However, a prominent shortcoming of this class of schedulers is that they 
can not satisfactorily handle aperiodic and sporadic tasks since the exact time of occurrence of 
these tasks can not be predicted.  For this reason, this type of schedulers is also called static 
scheduler. 

In  this  section,  we  study  the  basic  features  of  two  important  clock-driven  schedulers:   
table-driven  and  cyclic schedulers. 

 
1.5.1. Table-Driven Scheduling 

 
Table-driven  schedulers  usually  pre-compute  which  task  would  run  when,  and  store  

this  schedule  in  a  table  at  the time the system is designed or configured.  Rather than 
automatic computation of the schedule by the scheduler, the application programmer can be 
given the freedom to select his own schedule for the set of tasks in the application and store the 
schedule in a table (called schedule table) to be used by the scheduler at run time. 

An example of a schedule table is shown in Table 1. Table 1 shows that task T1 would be 
taken up for execution at time instant 0, T2 would start execution 3 milliseconds afterwards, and 
so on.  An important question that needs to be addressed at this point is what would be the size of 
the schedule table that would be required for some given set of periodic real-time tasks to be run 
on a system?  An answer to this question can be given as follows:  if a set ST = {Ti} of n tasks is 
to be scheduled, then the entries in the table will replicate themselves after LCM (p1, p2, … ,pn) 
time units, where p1, p2, …, pn  are the periods of T1, T2, ..., Tn.  For example, if we have the 
following three tasks: (e1=5 msecs, p1=20 msecs), (e2=20 msecs, p2=100 msecs), (e3=30 msecs, 
p3=250 msecs); then, the schedule will repeat after every 1000 msecs.  So, for any given task set, 
it is sufficient to store entries only for LCM (p1, p2, … ,pn) duration in the schedule table. LCM 
(p1, p2, …, pn) is called the major cycle of the set of tasks ST. 

 

 
 
In the reasoning we presented above for the computation of the size of a schedule table, one 

assumption that we implicitly made is that φi = 0.  That is, all tasks are in phase. 
 

A major cycle of a set of tasks is an interval of time on the time line such that in each major 
cycle, the different tasks recur identically. 

Task Start time in 
 millisecs 

T1 0 
T2 3 
T3 10 
T4 12 
T5 17 

 

Table 29.1 An Example of a Table-Driven Schedule 

Version 2 EE IIT, Kharagpur 11



However, tasks often do have non-zero phase. It  would  be  interesting  to  determine  what  
would  be  the  major cycle when tasks have non-zero phase. The result of an investigation into 
this issue has been given as Theorem 2.1. 

 
1.5.2. Theorem 1 

 
The major cycle of a set of tasks ST = {T1, T2, … , Tn} is LCM ({p1, p2, … , pn}) even when the 

tasks have arbitrary phasing. 
 
Proof:  As per our definition of a major cycle, even when tasks have non-zero phasing, task 

instances would repeat the same way in each major cycle.  Let us consider an example in which 
the occurrences of a task Ti in a major cycle be as shown in Fig.  29.4. As shown in the example 
of Fig.  29.4, there are k-1 occurrences of the task Ti during a major cycle.  The first occurrence 
of Ti starts φ time units from the start of the major cycle.  The major cycle ends x time units after 
the last (i.e. (k-1)th) occurrence of the task Ti  in the major cycle.  Of course, this must be the 
same in each major cycle. 

 

 

 

 

 

 

 
 
Assume that the size of each major cycle is M. Then, from an inspection of Fig. 29.4, for the 

task to repeat identically in each major cycle: 

M = (k-1)pi + φ + x     …(2.1) 

Now, for the task Ti to have identical occurrence times in each major cycle, φ + x must equal 
to pi (see Fig. 29.4). 

Substituting this in Expr. 2.1, we get, M = (k-1)∗ pi + pi = k∗ pi    …(2.2)  

So, the major cycle M contains an integral multiple of pi. This argument holds for each task  
in  the  task  set irrespective of its phase. Therefore M = LCM ({p1, p2,  … , pn}). 

 

Φ+x=pi 

Ti(1) Ti(2) Ti(k-1) Ti(k+1) Ti(2k-1) Ti(k) 

Φ Φ 

M M 

x x 
time 

Fig. 29.4 Major Cycle When a Task Ti  has Non-Zero Phasing 

1.5.3. Cyclic Schedulers 
 
Cyclic  schedulers  are  very  popular  and  are  being  extensively  used  in  the  industry. A  

large  majority  of  all  small embedded  applications  being  manufactured  presently  are  based  
on  cyclic  schedulers. Cyclic schedulers are simple, efficient, and are easy to program. An 
example application where a cyclic scheduler is normally used is a temperature controller. A  

Version 2 EE IIT, Kharagpur 12



temperature  controller  periodically  samples  the  temperature  of  a  room  and  maintains  it  at  
a  preset value. Such temperature controllers are embedded in typical computer-controlled air 
conditioners. 

 

 

 

 

 

Major Cycle Major Cycle 

Minor  
Cycle 

f1 f2 f3 f4 f4n f4n+1 f4n+2 

Fig. 29.5 Major and Minor Cycles in a Cyclic Scheduler 

f4n+3 

A cyclic scheduler repeats a pre-computed schedule. The pre-computed schedule needs to be 
stored only for one major cycle. Each task in the task set to be scheduled repeats identically in 
every major cycle.  The  major  cycle  is  divided  into  one  or  more  minor  cycles  (see  Fig.  
29.5). Each minor cycle is also sometimes called a frame.  In the example shown in Fig. 29.5, the 
major cycle has been divided into four minor cycles (frames). The scheduling points of a cyclic 
scheduler occur at frame boundaries.  This means that a task can start executing only at the 
beginning of a frame. 

The frame boundaries are defined through the interrupts generated by a periodic timer.  Each 
task is assigned to run in one or more frames.  The  assignment  of  tasks  to  frames  is  stored  in  
a  schedule  table.  An example schedule table is shown in Figure 29.6. 

 
Task 

Number
Frame 

Number 
T3 f1

T1 f2

T3 f3

T4 f4
 

Fig. 29.6 An Example Schedule Table for a Cyclic Scheduler 
 
The size of the frame to be used by the scheduler is an important design parameter and needs 

to be chosen very carefully.  A selected frame size should satisfy the following three constraints. 
 
1. Minimum Context Switching: This  constraint  is  imposed  to  minimize  the  number  

of  context  switches occurring  during  task  execution.   The  simplest  interpretation  of  
this  constraint  is  that  a  task  instance  must complete running within its assigned 
frame. Unless a task completes within its allocated frame, the task might have to be 
suspended and restarted in a later frame. This would require a context switch involving 
some processing overhead. To avoid unnecessary context switches, the selected frame 
size should be larger than the execution time of each task, so that when a task starts at a 
frame boundary it should be able to complete within the same frame. Formally, we can 
state this constraint as: max({ei}) < F where ei is the execution times of the of task Ti, and 
F is the frame size.  Note that this constraint imposes a lower-bound on frame size, i.e., 
frame size F must not be smaller than max({ei}). 

Version 2 EE IIT, Kharagpur 13



2. Minimization of Table Size: This constraint requires that the number of entries in the 
schedule table should be minimum, in order to minimize the storage requirement of the 
schedule table. Remember that cyclic schedulers are used in small embedded applications 
with a very small storage capacity. So, this constraint is important to the commercial 
success of a product. The number of entries to be stored in the schedule table can be 
minimized when the minor cycle squarely divides the major cycle.  When the minor cycle 
squarely divides the major cycle, the major cycle contains an integral number of minor 
cycles (no fractional minor cycles). Unless the minor cycle squarely divides the major 
cycle, storing the schedule for one major cycle would not be sufficient, as the schedules 
in the major cycle would not repeat and this would make the size of the schedule table 
large. We can formulate this constraint as: 

⎣M/F⎦  = M/F      …(2.3) 

In  other  words,  if  the  floor  of  M/F  equals  M/F,  then  the  major  cycle  would  
contain  an  integral  number  of frames. 

 
Task arrival 

Deadline  
Δt 

t d 

0 kF (k+1)F (k+2)F 

Fig. 29.7 Satisfaction of a Task Deadline 

 

 

 

 

 

 
 
3. Satisfaction of Task Deadline:  This third constraint on frame size is necessary to meet 

the task deadlines. This constraint imposes that between the arrival of a task and its 
deadline, there must exist at least one full frame.  This constraint is necessary since a task 
should not miss its deadline, because by the time it could be taken up for scheduling, the 
deadline was imminent.  Consider this:  a task can only be taken up for scheduling at the 
start of a frame.  If between the arrival and completion of a task, not even one frame 
exists, a situation as shown in Fig.  29.7 might arise.  In this case, the task arrives 
sometimes after the kth frame has started.  Obviously it can not be taken up for 
scheduling in the kth frame and can only be taken up in the k+1th frame.  But, then it 
may be too late to meet its deadline since the execution time of a task can be up to the 
size of a full frame. This  might  result  in  the  task  missing  its  deadline  since  the  task  
might  complete  only  at  the  end  of  (k+1)th frame much after the deadline d has 
passed.  We therefore need a full frame to exist between the arrival of a task and its 
deadline as shown in Fig.  29.8, so that task deadlines could be met. 
 

 

Version 2 EE IIT, Kharagpur 14



 

 
Task arrival Deadline  Δt 

t d 

0 kF 

(k+1)
F 

(k+2)F 

Fig. 29.8 A Full Frame Exists Between the Arrival and Deadline of a Task 

 

 

 

 
 
 

More formally, this constraint can be formulated as follows: Suppose a task arises after 
∆t time units have passed since the last frame (see Fig. 29.8). Then, assuming that a 
single frame is sufficient to complete the task, the task can complete before its deadline 
iff (2F     − ∆t) ≤ di, or 2F ≤ (di + ∆t).    
 …(2.4) 
Remember that the value of ∆t might vary from one instance of the task to another. The 
worst case scenario (where the task is likely to miss its deadline) occurs for the task 
instance having the minimum value of ∆t, such that ∆t > 0. This is the worst case 
scenario, since under this the task would have to wait the longest before its execution can 
start. 
It should be clear that if a task arrives just after a frame has started, then the task would 
have to wait for the full duration of the current frame before it can be taken up for 
execution.  If a task at all misses its deadline, then certainly it would be under such 
situations.  In other words, the worst case scenario for a task to meet its deadline occurs 
for its instance that has the minimum separation from the start of a frame.  The 
determination of  the  minimum  separation  value  (i.e. min(∆t))  for  a  task  among  all  
instances  of  the  task  would  help  in determining a feasible frame size.  We show by 
Theorem 2.2 that min(∆t) is equal to gcd(F, pi). Consequently, this constraint can be 
written as:  

for every Ti, 2F – gcd(F, pi) ≤ di    …(2.5) 
Note  that  this  constraint  defines  an  upper-bound  on  frame  size  for  a  task  Ti, i.e.,  
if  the  frame  size  is any larger than the defined upper-bound, then tasks might miss their 
deadlines.  Expr.  2.5 defined the frame size, from the consideration of one task only.  
Now considering all tasks, the frame size must be smaller than max(gcd(F, pi)+di)/2. 
 

1.5.4. Theorem  2 
 
The minimum separation of the task arrival from the corresponding frame start time 

(min(∆t)), considering all instances of a task Ti,  is equal to gcd(F, pi). 
 
Proof: Let  g = gcd(F, pi), where gcd  is  the  function  determining  the  greatest  common  

divisor  of  its  arguments.  It follows from the definition of gcd that g must squarely divide each 
of F and pi.  Let Ti be a task with zero phasing. Now, assume that this Theorem is violated for 
certain integers m and n, such that the Ti(n) occurs in the mth frame and  the  difference  between  

Version 2 EE IIT, Kharagpur 15



the  start  time  of  the  mth  frame  and  the  nth  task  arrival  time  is  less than g. That is,  0 < 
(m ∗ F – n ∗ pi) < g. 

Dividing this expression throughout by g, we get: 
0 < (m ∗ F/g – n ∗ pi/g) < 1    …(2.6) 

However, F/g and pi/g are both integers because g is gcd(F, pi,). Therefore, we can write F/g 
= I1 and pi/g = I2 for some integral values I1 and I2. Substituting this in Expr 2.6, we get 0 < m∗I1 
– n∗I2 < 1. Since m∗I1 and n∗I2 are both integers, their difference cannot be a fractional value 
lying between 0 and 1.  Therefore, this expression can never be satisfied. 

It  can  therefore  be  concluded  that  the  minimum  time  between  a  frame  boundary  and  
the  arrival  of  the  corresponding instance of Ti  can not be less than gcd(F, pi). 

For a given task set it is possible that more than one frame size satisfies all the three 
constraints.  In such cases, it is better to choose the shortest frame size.  This is because of the 
fact that the schedulability of a task set increases as more frames become available over a major 
cycle. 

It should however be remembered that the mere fact that a suitable frame size can be 
determined does not mean that a feasible schedule would be found.  It may so happen that there 
is not enough number of frames available in a major cycle to be assigned to all the task instances. 

We now illustrate how an appropriate frame size can be selected for cyclic schedulers 
through a few examples. 

 
1.5.5. Examples 

 
Example 1: A cyclic scheduler is to be used to run the following set of periodic tasks on a 
uniprocessor:          T1 = (e1=1, p1=4), T2 = (e2=, p2=5), T3 = (e3=1, p3=20), T4 = (e4=2, 
p4=20). Select an appropriate frame size. 
 
Solution: For the given task set, an appropriate frame size is the one that satisfies all the 
three required constraints. In the following, we determine a suitable frame size F which 
satisfies all the three required constraints. 
 
Constraint 1:  Let F be an appropriate frame size, then max {ei, F}. From this constraint, we 
get F ≥ 1.5. 
 
Constraint 2: The major cycle M for the given task set is given by M = LCM(4,5,20) = 20. 
M should be an integral multiple of the frame size F, i.e., M mod F = 0. This consideration 
implies that F can take on the values 2, 4, 5, 10, 20.  Frame size of 1 has been ruled out since 
it would violate the constraint 1. 
 
Constraint 3: To satisfy this constraint, we need to check whether a selected frame size F 
satisfies the inequality: 2F − gcd(F, pi) < di for each pi. 
Let us first try frame size 2. 
For F = 2 and task T1: 

2 ∗ 2 − gcd(2, 4) ≤ 4  ≡  4 − 2 ≤ 4 
Therefore, for p1 the inequality is satisfied. 
Let us try for F = 2 and task T2: 

2 ∗ 2 − gcd(2, 5) ≤ 5  ≡  4 − 1 ≤ 5 
Therefore, for p2 the inequality is satisfied. 
Let us try for F = 2 and task T3: 

Version 2 EE IIT, Kharagpur 16



2 ∗ 2 − gcd(2, 20) ≤ 20  ≡  4 − 2 ≤ 20 
Therefore, for p3 the inequality is satisfied. 
For F = 2 and task T4: 

2 ∗ 2 − gcd(2, 20) ≤ 20  ≡  4 − 2 ≤ 20 
For p4 the inequality is satisfied. 
Thus, constraint 3 is satisfied by all tasks for frame size 2. So, frame size 2 satisfies all the 
three constraints.  Hence, 2 is a feasible frame size. 
Let us try frame size 4. 
For F = 4 and task T1: 

2 ∗ 4 − gcd(4, 4) ≤ 4  ≡  8 − 4 ≤ 4 
Therefore, for p1 the inequality is satisfied. 
Let us try for F = 4 and task T2: 

2 ∗ 4 − gcd(4, 5) ≤ 5  ≡  8 − 1 ≤ 5 
For p2 the inequality is not satisfied. Therefore, we need not look any further. Clearly, F = 4 
is not a suitable frame size. 
Let us now try frame size 5, to check if that is also feasible. 
For F = 5 and task T1, we have 

2 ∗ 5 − gcd(5, 4) ≤ 4  ≡  10 − 1 ≤ 4 
The inequality is not satisfied for T1.  We need not look any further. Clearly, F = 5 is not a 
suitable frame size. 
 
Let us now try frame size 10. 
For F = 10 and task T1, we have 

2 ∗ 10 − gcd(10, 4) ≤ 4  ≡  20 − 2 ≤ 4 
The inequality is not satisfied for T1. We need not look any further. Clearly, F=10 is not a 
suitable frame size. 
Let us try if 20 is a feasible frame size. 
For F = 20 and task T1, we have 

2 ∗ 20 − gcd(20, 4) ≤ 4  ≡  40 − 4 ≤ 4 
Therefore, F = 20 is also not suitable. 
So, only the frame size 2 is suitable for scheduling. 
Even though for Example 1 we could successfully find a suitable frame size that satisfies all 
the three constraints, it is quite probable that a suitable frame size may not exist for many 
problems.  In such cases, to find a feasible frame size  we  might  have  to  split  the  task  (or  
a  few  tasks)  that  is  (are)  causing  violation  of  the  constraints  into  smaller sub-tasks 
that can be scheduled in different frames. 
 
Example 2: Consider the following set of periodic real-time tasks to be scheduled by a cyclic 
scheduler:          T1 = (e1=1, p1=4), T2 = (e2=2, p2=5), T3 = (e3=5, p3=20). Determine a 
suitable frame size for the task set. 
 
Solution: 
Using the first constraint, we have F ≥ 5.  
Using the second constraint, we have the major cycle M = LCM(4, 5, 20) = 20. So, the 
permissible values of F are 5, 10 and 20.  
Checking for a frame size that satisfies the third constraint, we can find that no value of F is 
suitable. To overcome this problem, we need to split the task that is making the task-set not 

Version 2 EE IIT, Kharagpur 17



schedulable. It is easy to observe that the task T3 has the largest execution time, and 
consequently due to constraint 1, makes the feasible frame sizes quite large. 
We try splitting T3 into two or three tasks. After splitting T3 into three tasks, we have: 

T3.1 = (20, 1, 20), T3.2 = (20, 2, 20), T3.3 = (20, 2, 20). 
The possible values of F now are 2 and 4.  We can check that now after splitting the tasks, 
F=2 and F=4 become feasible frame sizes. 
It is very difficult to come up with a clear set of guidelines to identify the exact task that is to 
be split, and the parts into which it needs to be split. Therefore, this needs to be done by trial 
and error. Further, as the number of tasks to be scheduled increases, this method of trial and 
error becomes impractical since each task needs to be checked separately. However, when 
the task set consists of only a few tasks we can easily apply this technique to find a feasible 
frame size for a set of tasks otherwise not schedulable by a cyclic scheduler. 
 

1.5.6. A Generalized Task  Scheduler 
 
We have already stated that cyclic schedulers are overwhelmingly popular in low-cost real-

time applications.  However,  our  discussion  on  cyclic  schedulers  was  so  far  restricted  to  
scheduling  periodic  real-time  tasks.  On  the  other hand,  many  practical  applications  
typically  consist  of  a  mixture  of  several  periodic,  aperiodic,  and  sporadic  tasks. In this 
section, we discuss how aperiodic and sporadic tasks can be accommodated by cyclic schedulers. 

 Recall  that  the  arrival  times  of  aperiodic  and  sporadic  tasks  are  expressed  
statistically.  Therefore, there is no way to assign aperiodic and sporadic tasks to frames without 
significantly lowering the overall achievable utilization of the system.  In a generalized 
scheduler, initially a schedule (assignment of tasks to frames) for only periodic tasks is prepared.  
The sporadic and aperiodic tasks are scheduled in the slack times that may be available in the 
frames. Slack time in a frame is the time left in the frame after a periodic task allocated to the 
frame completes its execution. Non-zero slack time in a frame can exist only when the execution 
time of the task allocated to it is smaller than the frame size. 

A  sporadic  task  is  taken  up  for  scheduling  only  if  enough  slack  time  is  available  for  
the  arriving  sporadic  task to  complete  before  its  deadline.   Therefore,  a  sporadic  task  on  
its  arrival  is  subjected  to  an  acceptance  test.   The acceptance test checks whether the task is 
likely to be completed within its deadline when executed in the available slack times. If  it  is  
not  possible  to  meet  the  task’s  deadline,  then  the  scheduler  rejects  it  and  the  
corresponding recovery routines for the task are run.  Since aperiodic tasks do not have strict 
deadlines, they can be taken up for scheduling without any acceptance test and best effort can be 
made to schedule them in the slack times available. Though for aperiodic tasks no acceptance 
test is done, but no guarantee is given for a task’s completion time and best effort is made to 
complete the task as early as possible. 

An  efficient  implementation  of  this  scheme  is  that  the  slack  times  are  stored  in  a  
table  and  during  acceptance test this table is used to check the schedulability of the arriving 
tasks. 

Another popular alternative is that the aperiodic and sporadic tasks are accepted without any 
acceptance test, and best effort is made to meet their respective deadlines. 

 
Pseudo-code for a Generalized Scheduler: The following is the pseudo-code for a 

generalized cyclic scheduler we discussed, which schedules periodic, aperiodic and sporadic 
tasks.  It is assumed that pre-computed schedule for periodic tasks is stored in a schedule table, 

Version 2 EE IIT, Kharagpur 18



and if required the sporadic tasks have already been subjected to an acceptance test and only 
those which have passed the test are available for scheduling. 

 
cyclic-scheduler() { 
current-task T = Schedule-Table[k]; 
k = k + 1; 
k = k mod N;  //N is the total number of tasks in the schedule 

table 
dispatch-current-task(T); 
schedule-sporadic-tasks(); //Current task T completed  early, 

//  sporadic  tasks  can  be  taken  
up 

schedule-aperiodic-tasks(); //At the end of the frame, the running 
task 

//  is pre-empted if not complete 
idle();     //No task to run, idle 
} 
 
The cyclic scheduler routine cyclic-scheduler () is activated at the end of every frame by a 

periodic timer.  If the  current  task  is  not  complete  by  the  end  of  the  frame,  then  it  is  
suspended  and  the  task  to  be  run  in  the  next frame is dispatched by invoking the routine 
cyclic-scheduler().  If the task scheduled in a frame completes early, then any existing sporadic 
or aperiodic task is taken up for execution. 

 
1.5.7. Comparison of Cyclic with Table-Driven Scheduling 

 
Both table-driven and cyclic schedulers are important clock-driven schedulers. A scheduler 

needs to set a periodic timer only once at the application initialization time.  This timer continues 
to give an interrupt exactly at every frame boundary. But  in  table-driven  scheduling,  a  timer  
has  to  be  set  every  time  a  task  starts  to  run.  The execution time of a typical real-time task 
is usually of the order of a few milliseconds.  Therefore, a call to a timer is made every few mill 
Seconds.  This represents a significant overhead and results in degraded system performance. 
Therefore,  a  cyclic  scheduler  is  more  efficient  than  a  table-driven  scheduler. This probably 
is a reason why cyclic schedulers are so overwhelmingly popular especially in embedded 
applications.  However,  if the overhead of setting a  timer  can  be  ignored,  a  table-driven  
scheduler  is  more  proficient  than  a  cyclic  scheduler  because  the  size  of  the frame  that  
needs  to  be  chosen  should  be  at  least  as  long  as  the  size  of  the  largest  execution  time  
of  a  task  in  the task set.  This is a source of inefficiency, since this results in processor time 
being wasted in case of those tasks whose execution times are smaller than the chosen frame 
size. 

 
1.6. Exercises 
 
1. State whether the following assertions are True or False.  Write one or two sentences to 

justify your choice in each case. 
a. Average response time is an important performance metric for real-time operating 

systems handling running of hard real-time tasks. 
b. Unlike table-driven schedulers, cyclic schedulers do not require to store a pre-

computed schedule. 

Version 2 EE IIT, Kharagpur 19



c. The minimum period for which a table-driven scheduler scheduling n periodic tasks 
needs to pre-store the schedule is given by max{p1, p2, …, pn}, where pi  is the period 
of the task Ti. 

d. A  cyclic  scheduler  is  more  proficient  than  a  pure  table-driven  scheduler  for  
scheduling  a  set  of  hard real-time tasks. 

e. A suitable figure of merit to compare the performance of different hard real-time task 
scheduling algorithms can be the average task response times resulting from each 
algorithm. 

f. Cyclic schedulers are more proficient than table-driven schedulers. 
g. While using a cyclic scheduler to schedule a set of real-time tasks on a uniprocessor, 

when a suitable frame size satisfying all the three required constraints has been found, 
it is guaranteed that the task set would be feasibly scheduled by the cyclic scheduler. 

h. When more than one frame satisfies all the constraints on frame size while scheduling a 
set of hard real-time periodic tasks using a cyclic scheduler, the largest of these frame 
sizes should be chosen. 

i. In table-driven scheduling of three periodic tasks T1,T2,T3, the scheduling table must 
have schedules for all tasks drawn up to the time interval [0,max(p1,p2,p3)], where pi is 
the period of the task Ti. 

j. When  a  set  of  hard  real-time  periodic  tasks  are  being  scheduled  using  a  cyclic  
scheduler,  if  a  certain frame size is found to be not suitable, then any frame size 
smaller than this would not also be suitable for scheduling the tasks. 

k. When  a  set  of  hard  real-time  periodic  tasks  are  being  scheduled using  a cyclic  
scheduler,  if  a candidate frame size exceeds the execution time of every task and 
squarely divides the major cycle,  then it would be a suitable frame size to schedule the 
given set of tasks. 

l. Finding an optimal schedule for a set of independent periodic hard real-time tasks 
without any resource- sharing constraints under static priority conditions is an NP-
complete problem. 

2. Real-time tasks are normally classified into periodic, aperiodic, and sporadic real-time 
task. 
a. What are the basic criteria based on which a real-time task can be determined to belong 

to one of the three categories? 
b. Identify some characteristics that are unique to each of the three categories of tasks. 
c. Give examples of tasks in practical systems which belong to each of the three 

categories. 
3. What do you understand by an optimal scheduling algorithm?  Is it true that the time 

complexity of an optimal scheduling algorithm for scheduling a set of real-time tasks in a 
uniprocessor is prohibitively expensive to be of any practical use?  Explain your answer. 

4. Suppose a set of three periodic tasks is to be scheduled using a cyclic scheduler on a 
uniprocessor. Assume that the CPU utilization due to the three tasks is less than 1. Also, 
assume that for each of the three tasks, the deadlines equals the respective periods. 
Suppose that we are able to find an appropriate frame size (without having to split any of 
the tasks) that satisfies the three constraints of minimization of context switches, 
minimization of schedule table size, and satisfaction of deadlines. Does this imply that it is 
possible to assert that we can feasibly schedule the three tasks using the cyclic scheduler? 
If you answer affirmatively, then prove your answer. If you answer negatively, then show 
an example involving three tasks that disproves the assertion. 

5. Consider a real-time system which consists of three tasks T1, T2, and T3, which have been 
characterized in the following table. 

Version 2 EE IIT, Kharagpur 20



Task Phase 
mSec 

Execution Time 
mSec 

Relative Deadline 
mSec 

Period 
mSec 

T1 20 10 20 20 
T2 40 10 50 50 
T3 70 20 80 80 

 
If the tasks are to be scheduled using a table-driven scheduler, what is the length of time 
for which the schedules have to be stored in the pre-computed schedule table of the 
scheduler. 

6. A  cyclic  real-time  scheduler  is  to  be  used  to  schedule  three  periodic  tasks  T1,  T2,  
and  T3   with  the  following characteristics: 

 

Task Phase 
mSec 

Execution Time 
mSec 

Relative Deadline 
mSec 

Period 
mSec 

T1 0 20 100 100 
T2 0 20 80 80 
T3 0 30 150 150 

 
Suggest a suitable frame size that can be used.  Show all intermediate steps in your 
calculations. 

7.  Consider the following set of three independent real-time periodic tasks. 
 

Task Start Time 
mSec 

Processing Time 
mSec 

Period 
mSec 

Deadline 
mSec 

T1 20 25 150 100 
T2 40 10 50 30 
T3 60 50 200 150 

 
Suppose  a  cyclic  scheduler  is  to  be  used  to  schedule  the  task  set.   What is the 
major cycle of the task set? Suggest a suitable frame size and provide a feasible schedule 
(task to frame assignment for a major cycle) for the task set. 

Version 2 EE IIT, Kharagpur 21


	Embedded System Software
	Real-Time Task Scheduling – Part 1
	Specific Instructional Objectives
	Real-Time Task Scheduling
	Basic Terminologies
	Types of Real-Time Tasks
	Task Scheduling
	A Few Basic Concepts

	Classification of Real-Time Task Scheduling Algorithms
	Clock-Driven Scheduling
	Table-Driven Scheduling
	Theorem 1
	Cyclic Schedulers
	Theorem 2
	Examples
	A Generalized Task Scheduler
	Comparison of Cyclic with Table-Driven Scheduling

	Exercises

