
P.C.P Bhatt OS/M7/V1/2005 1

Interprocess Communication

P.C.P. Bhatt

P.C.P Bhatt OS/M7/V1/2005 2

Introduction

• IPC coordinates between computation spread over several

processes.

• IPC enables communication amongst process.

• Synchronization amongst processes.

• Need for IPC arises in parallel and distributed processing

contexts.

P.C.P Bhatt OS/M7/V1/2005 3

Creating a New Process

• The fork() system call brings in a new process into an

existing execution environment.

• fork() invokes kernel services for process creation.

• The system call fork() spawns a new process which is a

copy of the parent process from where it is invoked.

P.C.P Bhatt OS/M7/V1/2005 4

Processing System calls

P.C.P Bhatt OS/M7/V1/2005 5

The fork() System Call

• Signals are powerful interprocess communication mechanism.

• Wait and Exit are utilized to have interprocess communication

in particular for synchronize activities of the process.

• The return value of system call is utilized to identify when the

parent or child is in execution.

P.C.P Bhatt OS/M7/V1/2005 6

Demonstrating use of fork system call
• //The Program: Demonstration of the use of fork() system call
• int main()
• {
• int i,j;
• if (fork()) /*must be parent */
• {
• printf("\t\t In Parent \n");
• printf("\t\t pid = %d and ppid = %d \n\n",getpid (),getppid ());
• for (i=0;i<100;i=i+5)
• {
• for (j=0;j<100000;j++);
• printf("\t\t\t In Parent %d \n",i);
• }
• wait(0); /*wait for child to terminate*/
• printf("In Parent : Now the child has terminated \n");

P.C.P Bhatt OS/M7/V1/2005 7

Demonstrating use of fork system call

P.C.P Bhatt OS/M7/V1/2005 8

Assigning task to a newly spawned Process
//The Program: To get an integer
#include<stdio.h>
#include<ctype.h>
int get_integer(n_p)

int *n_p;
{

int c;
int mul,sign;
int integer_part;
*n_p=0;
mul=10;
while(isspace(c = getchar())); /* skipping white space*
if(!isdigit(c) && c!='+' && c!= '-')
{

/* ungetchar(c);*/

P.C.P Bhatt OS/M7/V1/2005 9

Assigning task to a newly spawned Process
printf(“Found an invalid character in the integer description \n");
return 0;

}
if (c=='-')sign = -1.0;
if (c=='+') sign = 1.0;
if (c=='-' ||c=='+') c=getchar();
for (integer_part=0;isdigit(c);c= getchar())
{

integer_part=mul * integer_part +(c- '0');
};

*n_p=integer_part;
if(sign==-1)*n_p=-*n_p;
if(c==EOF) return (*n_p);

}
int main()

P.C.P Bhatt OS/M7/V1/2005 10

Assigning task to a newly
spawned Process

{

int no;

int get_integer();

printf("Input a number as signed or unsigned integer e.g. +5 or -6 or 23\n");

get_integer (&no);

printf("The no. that was input was %d \n",no);

return 0;

}

P.C.P Bhatt OS/M7/V1/2005 11

Assigning task to a newly spawned Process

P.C.P Bhatt OS/M7/V1/2005 12

Establishing interprocess
communication

• Pipes – direct the outstream of one process to feed the

input of another process.

• Shared Memory location – One process write into a

memory location and expect the other process to read

from it.

• Message – one process sends and other interprets the

message.

P.C.P Bhatt OS/M7/V1/2005 13

Pipes as Mechanism for Interprocess
Communication

• The pipe is defined by pipe(p_des).
• The dup command replaces the standard I/O by pipe

descriptors.
• The execlp command is used to populate the child process

with code.
• The close command closes the appropriate ends of the

pipe.
• The get_str and rev_str processes are pre-compiled to yield

the required executables.

P.C.P Bhatt OS/M7/V1/2005 14

Pipes as IPC mechanism

P.C.P Bhatt OS/M7/V1/2005 15

Pipes as an IPC mechanism

• Unix pipes are buffers managed from within the kernel.

• A pipe operates in one direction only.

• Closing of ends is required to use a pipe.

• Pipes are not useful for processes across networks.

• Its insecure mode of communication.

• Pipes cannot support broadcast

P.C.P Bhatt OS/M7/V1/2005 16

Shared Files

• Very commonly employed IPC.

• Involves writer and reader process.

• This method does not require special system calls.

• Requires file creation, access and operations on files.

• Reader writer problem – mismatch of speed in the speed of

reader and writer.

P.C.P Bhatt OS/M7/V1/2005 17

Shared Memory Communication

• Requires a certain commonly accessed area.

• Shared memory allows access to common data area even

amongst the processes that are not related

• To maintain data integrity, the access is planned carefully

under a user program control.

P.C.P Bhatt OS/M7/V1/2005 18

Shared Memory Model

• Set up a shared memory mechanism in the kernel.

• Identify “safe area” attach to each of the processes.

• Use shared data space in a consistent manner.

• When finished, detach the shared data space from all

processes to which it is attached.

• Delete the information concerning the shared memory

from the kernel.

P.C.P Bhatt OS/M7/V1/2005 19

Message-based IPC

• Very general form of communication.

• Used to send and receive formatted data streams between

arbitrary processes.

• Message types helps in message interpretation.

• Usually at receiver end, messages are put in a message

queue.

P.C.P Bhatt OS/M7/V1/2005 20

Signals as IPC

• One way to communicate asynchronous events.

• Signal types – generated from various sources.

• Signal handlers – offer a set of responses.

P.C.P Bhatt OS/M7/V1/2005 21

Sources of signal
• From the terminal

– SIGINT (Ctrl C)
• From window manager

– SIGWINCH (change in size of window)
• From other subsystems

– SIGSEGV (external memory reference)
• From kernel

– SIGALARM (alarm signal)
• From the processes

– SIGKILL (kill signal)

P.C.P Bhatt OS/M7/V1/2005 22

Responses to signals

• Ignore it

• Respond to it

• Reconfigure

• Turn on/off options

• Timer information

