
P.C.P Bhatt OS/M6/V1/2004 1

Resource Sharing & Management

P.C.P Bhatt

P.C.P Bhatt OS/M6/V1/2004 2

Some of the resources connected to a computer system

(image processing resource) may be expensive.

• These resources may be shared among users or

processes.

Introduction

P.C.P Bhatt OS/M6/V1/2004 3

We have multiple resources and processes that can

request multiple copies of each resource.

It is difficult modeling this as a graph.

We use the matrix method to model this scenario.

Dead-Lock Prevention

P.C.P Bhatt OS/M6/V1/2004 4

Assume n processes and m kinds of resources.

We denote the ith resource with ri.

We define 2 vectors each of size m,

Vector R = (r1, r2,……., rm)

Vector A = (a1, a2,……, am) where ai is the resource of

type i available for allocation.

We define 2 matrices for allocations made (AM) and the

requests pending for resources (RM).

P.C.P Bhatt OS/M6/V1/2004 5

Matrix model of Requests and Allocation

P.C.P Bhatt OS/M6/V1/2004 6

Clearly, we must have

n

[Σ ci,j + aj] <= rj

i=1

n

[Σ qi,j] >= rj

i=1

P.C.P Bhatt OS/M6/V1/2004 7

This is a deadlock prevention algorithm based on resource

denial if there is a suspected risk of a deadlock.

A request of a process is assessed if the process resources can

be met from the available resources RMi,j <= ai for all j.

Once the process is run, it shall return all the resources it held.

Bankers Algorithm

P.C.P Bhatt OS/M6/V1/2004 8

Note that Banker’s Algorithm makes sure that only

processes that will run to completion are scheduled

to run.

However, if there are deadlocked processes, the will

remain deadlocked.

Banker’s Algorithm does not eliminate a deadlock.

P.C.P Bhatt OS/M6/V1/2004 9

Banker’s Algorithm makes some unrealistic

assumptions –resource requirements for processes is

known in advance.

The algorithm requires that there is no specific order in

which the processes should be run.

It assumes that there is a fixed number of resources

available on the system.

P.C.P Bhatt OS/M6/V1/2004 10

In the digraph model with one resource of one kind, we

are required to detect a directed cycle in a processor

resource digraph.

For each process, use the process node as root and

traverse the digraph in depth first mode marking the

nodes. If a marked node is revisited, deadlock exists.

A Graph Based Detection Algorithm

P.C.P Bhatt OS/M6/V1/2004 11

Consider a process Pi and its corresponding row in

matrix RM.

If vector RM <= A then every resource request of

process Pi can be met from the available set of

resources.

On completion, this process can return its current

allocation in row AMi for another process.

P.C.P Bhatt OS/M6/V1/2004 12

Deadlock detection algorithm is in the following steps :

Step 0 : Assume that all processes are unmarked initially.

Step 1: While there are unmarked processes, choose an

unmarked process with RMi <= A. process Step 2 else

go to Step 3.

P.C.P Bhatt OS/M6/V1/2004 13

Step 2 : Add row AMi to A and mark the process.

Step 3 : If there is no such process the algorithm terminates.

If all processes are marked, no deadlock.

If there is a set of processes that remain unmarked, then this

set of processes have a deadlock.

P.C.P Bhatt OS/M6/V1/2004 14

Note that notwithstanding the non-deterministic

nature of the algorithm it always detects a deadlock.

The method detects a deadlock if present; it does not

eliminate a deadlock.

Deadlock elimination may require preemption or

release of resources.

P.C.P Bhatt OS/M6/V1/2004 15

Mutual exclusion is required for memory.

Mutual exclusion must be ensured whenever there is a

shared area of memory and processes writing to it.

The main motivation is to avoid race condition among

processes.

Mutual Exclusion Revisited :
Critical Sections

P.C.P Bhatt OS/M6/V1/2004 16

Critical Section is the section of code that is executed

exclusively and without any interruptions – none of

its operations can be annulled.

Unix provides a facility called semaphore to allow

processes to use critical sections mutually exclusive

of each other.

P.C.P Bhatt OS/M6/V1/2004 17

A semaphore is essentially a variable which is treated in a

special way.

Access and operations on a semaphore is permitted only

when it is in a free state.

If a process locks a semaphore, others cannot get access to it.

P.C.P Bhatt OS/M6/V1/2004 18

When a process enters a critical section, other processes are

prevented from accessing this shared variable.

A process frees the semaphore on exiting the critical section.

To ensure this working, a notion of atomicity or indivisibility

is invoked.

P.C.P Bhatt OS/M6/V1/2004 19

• A semaphore takes only integer values.

• There are only two operations possible on a

semaphore:

A wait operation on a semaphore decreases its value by 1.

wait(s) : while s < 0 do noop; s := s-1;

Basic Properties of Semaphores

P.C.P Bhatt OS/M6/V1/2004 20

A signal operation increments its value

signal(s) : s := s + 1;

• A semaphore operation is atomic.

A process is blocked if its wait operation evaluates a

negative semaphore value.

• A blocked process can be unblocked when some

other process executes a signal operation.

P.C.P Bhatt OS/M6/V1/2004 21

Suppose two processes P1 and P2 use a semaphore

variable use with initial value 0.

We assume both processes have a program structure

as:

Usage of Semaphore

P.C.P Bhatt OS/M6/V1/2004 22

repeat

some process code here

wait(use);

enter the critical section the process

manipulates a shared area);

signal(use);

rest of the process code;

until false;

P.C.P Bhatt OS/M6/V1/2004 23

We have here an infinite loop for both

processes.

Either P1 or P2 can be in its critical

section.

P.C.P Bhatt OS/M6/V1/2004 24

The following is a representative operational sequence.

• Initially neither process is in critical section and

use = 0.

• P1 arrives at critical section first and calls

wait(use).

• It succeeds and enters the critical section setting

use = -1.

• P2 wants to enter its critical section. Calls wait procedure.

P.C.P Bhatt OS/M6/V1/2004 25

• As use < 0, P2 busy waits.

• P1 executes signal and exits its

critical section, use = 0 now.

• P2 exits busy wait loop. It enters

critical section use = -1.

The above sequence continues.

Semaphore is also used to synchronize amongst

processes. A process may have a synchronizing event.

P.C.P Bhatt OS/M6/V1/2004 26

Suppose we have 2 processes Pi and Pj, Pj can execute

some statement sj only after statement si in Pi has been

executed.

This can be achieved with semaphore se initialized to -

1 as follows:

• In Pi, execute sequence sj ; signal(se);

• In Pj execute wait(se); sj;

Now, Pj must wait completion of sj before it can

execute sj.

P.C.P Bhatt OS/M6/V1/2004 27

These resources are not all used all the time.

In case of a printer - output resource is used once in a while.

This printer must be used amongst multiple users - because

the printer is expensive and because it is sparingly used.

P.C.P Bhatt OS/M6/V1/2004 28

Resources may be categorized depending upon the

nature of their use.

OS needs a policy to schedule its use - dependant on

nature of use, frequency and context of use.

For a printer, OS can spool the data to the printer the

printer requests.

P.C.P Bhatt OS/M6/V1/2004 29

Each printer job must have exclusive use of it till it

finishes.

Print-outs would be garbled otherwise.

Some times processes may require more than one

resource.

A process may not be able to proceed till it gets all the

resource.

P.C.P Bhatt OS/M6/V1/2004 30

Consider a process P1 requiring resources r1 and r2.

Consider process P2 requiring resources r2 and r3.

P1 will proceed only when it has both r1 and r2. P2

needs both r2 and r3. If P2 has r2, then P1 has to wait

until P2 releases r2 or terminates.

P.C.P Bhatt OS/M6/V1/2004 31

Mutual Exclusion is required in many situations in the

OS design.

Consider the context of management of a print request queue.

Processes that need to print a file, deposit the file address into

this queue. Printer spooler process picks the file address from

this queue to print files.

Mutual Exclusion

P.C.P Bhatt OS/M6/V1/2004 32

P.C.P Bhatt OS/M6/V1/2004 33

Both processes Pi and Pj think their print jobs

are spooled.

Q can be considered as a shared memory area between

processes Pi, Pj and Ps.

Inter Process Communication can be established

between processes that need printing and that which

does printing.

P.C.P Bhatt OS/M6/V1/2004 34

Consider an example in which process P1 needs 3

resources r1, r2 and r3 to make any progress.

Similarly, P2 needs resources r2 and r3.

Suppose P1 gets r1 and r3; P2 gets r3.

P2 is waiting for r2 to be released; P1 is waiting for r3 to

be released …… deadlock.

Deadlocks

P.C.P Bhatt OS/M6/V1/2004 35

A dead-lock is a condition that may involve two or

more processes in a state such that each is waiting

for release of a resource currently held by some

other process.

P.C.P Bhatt OS/M6/V1/2004 36

P.C.P Bhatt OS/M6/V1/2004 37

Formally, a deadlock occurs when the following

conditions are present simultaneously

• Mutual Exclusion

• Hold and Wait

• No preemption

• Circular Wait

P.C.P Bhatt OS/M6/V1/2004 38

Conditions for dead-lock to occur are mutual exclusion,

hold and wait, no preemption and circular wait.

The first 3 conditions for dead-lock are necessary

conditions. Circular Wait implies Hold and Wait.

How does one avoid having a dead-lock??

Dead-lock Avoidance

P.C.P Bhatt OS/M6/V1/2004 39

One possibility is to have multiple resources of the

same kind.

Sometimes, we may be able to break a dead-lock by

having a few additional copies of a resource.

When one copy is taken, there is always another copy

of that resource.

Infinite Resource Argument

P.C.P Bhatt OS/M6/V1/2004 40

P.C.P Bhatt OS/M6/V1/2004 41

The pertinent question is,

how many copies of each resource do we need??

Unfortunately, theoretically, we need infinite number of

resources!!!

In the example, if P3 is deadlocked, the deadlock

between P1 and P3 cannot be broken.

P.C.P Bhatt OS/M6/V1/2004 42

It takes 4 conditions for dead-lock to occur.

This dead-lock avoidance simply states do not let

conditions occur:

Mutual exclusion - unfortunately many resources

require many exclusion!!

Never let the conditions occur

P.C.P Bhatt OS/M6/V1/2004 43

Hold and Wait - since this is implied by Circular Wait,

we may possibly avoid Circular Wait.

Preemption - may not be the best policy to avoid dead-

lock but works and is clearly enforceable in many

situations.

P.C.P Bhatt OS/M6/V1/2004 44

We have multiple resources and processes that can

request multiple copies of each resource.

It is difficult modeling this as a graph.

We use the matrix method to model this scenario.

Dead-Lock Prevention

P.C.P Bhatt OS/M6/V1/2004 45

Assume n processes and m kinds of resources.

We denote the ith resource with ri.

We define 2 vectors each of size m,

Vector R = (r1, r2,……., rm)

Vector A = (a1, a2,……, am) where ai is the resource of

type i available for allocation.

P.C.P Bhatt OS/M6/V1/2004 46

We define 2 matrices for allocations made (AM) and the the
requests pending for resources (RM).

P.C.P Bhatt OS/M6/V1/2004 47

This is a deadlock prevention algorithm based on resource

denial if there is a suspected risk of a deadlock.

A request of a process is assessed if the process resources can

be met from the available resources RMi,j <= ai for all j.

Once the process is run, it shall return all the resources it held.

Bankers Algorithm

P.C.P Bhatt OS/M6/V1/2004 48

Note that Banker’s Algorithm makes sure that only processes

that will run to completion are scheduled to run.

However, if there are deadlocked processes, the will remain

deadlocked.

Banker’s Algorithm does not eliminate a deadlock.

