
P.C.P Bhatt OS/M14/V1/2004 1

Kernel Architecture : UNIX Kernel

It is responsible for scheduling running of user
and other processes.

It is responsible for allocating memory.

It is responsible for managing the swapping
between memory and disk.

It is responsible for moving data to and from the
peripherals.

It receives service requests from the processes
and honours them.

P.C.P Bhatt OS/M14/V1/2004 2

User Mode and Kernel - 1
At any one time we have one process engaging the CPU. This
may be a user process or a system routine (like ls, chmod) that is

providing a service.

The following three situations result in switching to kernel mode
from user mode of operation:
1. The scheduler allocates a user process a slice of time (about

0.1 second) and then system clock interrupts. This entails
storage of the currently running process status and selecting
another runnable process to execute. This switching is done in
kernel mode. A point that ought to be noted is: on being
switched the current process's priority is re-evaluated (usually
lowered).

P.C.P Bhatt OS/M14/V1/2004 3

The Unix priorities are ordered in decreasing order as
follows:

HW errors
Clock interrupt
Disk I/O
Keyboard
SW traps and interrupts

2. Services are provided by kernel by switching to the kernel
mode. So if a user program needs a service (such as print
service, or access to another file for some data) the operation
switches to the kernel mode. If the user is seeking a
peripheral transfer like reading a data from keyboard, the
scheduler puts the currently running process to “sleep” mode.

User Mode and Kernel - 2

P.C.P Bhatt OS/M14/V1/2004 4

3. Suppose a user process had sought a data and the peripheral
is now ready to provide the data, then the process interrupts.
The hardware interrupts are handled by switching to the
kernel mode. In other words, the kernel acts as the via-media
between all the processes and the hardware as depicted in
the below figure

The kernel interface.

User Mode and Kernel - 3

P.C.P Bhatt OS/M14/V1/2004 5

System Calls in UNIX

The following are typical system calls in Unix:
Intent of a process The C function call

Open a file open
Close a file close
Perform I/O read/write
Send a signal kill (actually there are several signals)
Create a pipe pipe
Create a socket socket
Duplicate a process fork
Overlay a process exec
Terminate a process exit

P.C.P Bhatt OS/M14/V1/2004 6

Unix Kernel Steps
Typically, Unix kernels execute the following secure seven steps
on a system call:
1. Arguments (if present) for the system call are determined.
2. Arguments (if present) for the system call are pushed in astack.
3. The state of calling process is saved in a user structure.
4. The process switches to kernel mode.
5. The syscall vector is used as an interface to the kernel routine.
6. The kernel initiates the services routine and a return value is

obtained from the kernel service routine.
7. The return value is converted to a c version (usually an integer

or a long integer). The value is returned to process which
initiated the call. The system also logs the userid of the process
that initiated that call.

P.C.P Bhatt OS/M14/V1/2004 7

An Example of a System Call
Let us trace the sequence when a system call to open a file
occurs.

User process executes a syscall open a file.
User process links to a c runtime library for open and sets
up the needed parameters in registers.
A SW trap is executed now and the operation switches to
the kernel mode.
- The kernel looks up the syscall vector to call "open“
- The kernel tables are modified to open the file.
- Return to the point of call with exit status.

Return to the user process with value and status.
The user process may resume now with modified status on
file or abort on error with exit status.

P.C.P Bhatt OS/M14/V1/2004 8

Process States in Unix
Unix has the following process state transitions:
idle ----> runnable -----> running.
running ----> sleep (usually when a process seeks an event like

I/O, it sleeps awaiting event completion).
running ----> suspended (suspended on a signal).
running ----> Zombie (process has terminate but has yet to return

to its exit code to parent. In unix every process
reports its exit status to the parent.)

sleeping ---> runnable
suspended---> runnable
Note that it is the sleep operation which gives the user process an
illusion of synchronous operation.

P.C.P Bhatt OS/M14/V1/2004 9

How does Kernel process differ from User
Process

1. The first major key difference between the kernel process and
other processes lies in the fact that kernel also maintains the
needed data-structures on behalf of Unix. Kernel maintains
most of this data-structure in the main memory itself. The OS
based paging or segmentation cannot swap these data
structures in or out of the main memory.

2. Another way the kernel differs from the user processes is that it
can access the scheduler. Kernel also maintains a disk cache,
basically a buffer, which is synchronised ever so often (usually
every 30 seconds) to maintain disk file consistency. During
this period all the other processes except kernel are suspended.

3. Finally, kernel can also issue signals to kill any process (like a
process parent can send a signal to child to abort). Also, no
other process can abort kernel.

P.C.P Bhatt OS/M14/V1/2004 10

Page Table Format
A fundamental data structure in main memory is page table
which maps pages in virtual address space to the main
memory. Typically, a page table entry may have the
following information.
1. The page mapping as a page frame number, i.e. which disk

area it mirrors.
2. The date page was created.
3. Page protection bit for read/write protections.
4. Bits to indicate if the page was modified following the last

read.
5. The current page address validity (vis-a-vis the disk).

P.C.P Bhatt OS/M14/V1/2004 11

The typical User – Kernel Mode is shown in the following figure

Mapping of Data an Code Area for a
User - 1

User and Kernel Space.

P.C.P Bhatt OS/M14/V1/2004 12

The memory is often divided into four quadrants as shown in
previous figure. The vertical line shows division between the
user and the kernel space. The horizontal line shows the
swappable and memory resident division.
User processes use the following areas :

Code area: Contains the executable code.
Data area: Contains the static data used by the process.
Stack area: Usually contains temporary storages needed by

the process.
User area : Stores the housekeeping data.
Page tables : Used for memory management and accessed

by kernel.

Mapping of Data an Code Area for a
User - 2

P.C.P Bhatt OS/M14/V1/2004 13

Region Tables in UNIX

A region table stores the following information.
Pointers to i-nodes of files in the region.
The type of region (the four kinds of files in Unix).
Region size.
Pointers to page tables that store the region.
Bit indicating if the region is locked.
The process numbers currently accessing the region.

P.C.P Bhatt OS/M14/V1/2004 14

Scheduler - 1
Most Unix schedulers follow the rules given below for
scheduling:
1. Usually a scheduler reevaluates the process priorities at 1

second interval. The system maintains queues for each priority
level.

2. Every tenth of a second the scheduler selects the topmost
process in the runnable queue with the highest priority.

3. If a process is runnable at the end of its allocated time, it joins
the tail of the queue maintained for its priority level.

4. If a process is put to sleep awaiting an event, then the
scheduler allocates the processor to another process.

5. If a process awaiting an event returns from a system call within
its allocated time interval but there is a runnable process with a
higher priority then the process is interrupted and higher
priority, process is allocated the CPU.

P.C.P Bhatt OS/M14/V1/2004 15

6. Periodic clock interrupts occur at the rate of 100
interruptions per second. The clock is updated for a tick and
process priority of a running process is decremented after a
count of 4 ticks. The priority is calculated as follows:

priority = (CPU quantum used recently)/(a constant) +
(base priority) + (the nice setting).

Usually the priority diminishes as the CPU quantum rises
during the window of time allocated. As a consequence
compute intensive processes are penalised and processes
with I/O intensive activity enjoy higher priorities.

Scheduler - 2

P.C.P Bhatt OS/M14/V1/2004 16

Tour Of Linux Kernel - 1
We shall briefly explore Linux as an example. Later we will
describe in greater detail. For now let us look at the major
subsystems in Linux environment.

User Applications - the set of applications in use on a
particular Linux system will be different depending on what
the computer system is used for, but typical examples
include a word-processing application and a web-browser.

O/S Services - these are services that are typically
considered part of the operating system (a windowing
system, command shell, etc.); also, the programming
interface to the kernel (compiler tool and library) is included
in this subsystem.

P.C.P Bhatt OS/M14/V1/2004 17

Linux Kernel - this is the main area of interest in this paper;

the kernel abstracts and mediates access to the hardware

resources, including the CPU.

Hardware Controllers - this subsystem is comprised of all

the possible physical devices in a Linux installation; for

example, the CPU, memory hardware, hard disks, and

network hardware are all members of this subsystem.

Tour Of Linux Kernel - 2

P.C.P Bhatt OS/M14/V1/2004 18

The Linux kernel is composed of five main subsystems:

The Process Scheduler (SCHED) is responsible for
controlling process access to the CPU. The scheduler
enforces a policy that ensures that processes will have fair
access to the CPU, while ensuring that necessary hardware
actions are performed by the kernel on time.

sourcefiles:
(/usr/src/linux/sched.c)
(header files in /usr/src/include/linux/sched.h)

Tour Of Linux Kernel - 3

P.C.P Bhatt OS/M14/V1/2004 19

The Memory Manager (MM) permits multiple process to
securely share the machine's main memory system.

In addition, the memory manager supports virtual memory
that allows Linux to support processes that use more
memory than is available in the system.
Unused memory is swapped out to persistent storage using
the file system then swapped back in when it is needed.

sources:
(/usr/src/linux/mm)
(header files in /usr/src/include/linux/ and
/usr/src/include/asm)

Tour Of Linux Kernel - 4

P.C.P Bhatt OS/M14/V1/2004 20

The Virtual File System (VFS) abstracts the details of the
variety of hardware devices by presenting a common file
interface to all devices. In addition, the VFS supports
several file system formats that are compatible with other
operating systems.

(/usr/src/linux/fs)
(header files in /usr/src/include/linux/ and
/usr/src/include/asm)

Tour Of Linux Kernel - 5

P.C.P Bhatt OS/M14/V1/2004 21

The Network Interface (NET) provides access to several
networking standards and a variety of network hardware.

(/usr/src/linux/net)
(header files in /usr/src/include/linux/ ,
/usr/src/include/net and /usr/src/include/asm)

Tour Of Linux Kernel - 6

P.C.P Bhatt OS/M14/V1/2004 22

The Inter-Process Communication (IPC) subsystem
supports several mechanisms for process-to-process
communication on a single Linux system.

(/usr/src/linux/ipc)
(header files in /usr/src/include/linux/ ,
/usr/src/include/asm and /usr/src/linux/ipc)

Many of these subsystems specially VFS and NET
require the help of device drivers to talk to the
underlying hardware. The code for this is present in

(/usr/src/linux/drivers)

Tour Of Linux Kernel - 7

P.C.P Bhatt OS/M14/V1/2004 23

In addition, Linux isolates the architecture dependent code.
Linux source code includes two architecture dependent
directories:

/usr/src/linux/arch and /usr/src/linux/include
arch:i3a86 s390
include:asm asm-i386 asm-s390

* Note: We will study the IPC in Module 7 in detail.
Also we shall study more about Linux in Module 19.

Tour Of Linux Kernel - 8

P.C.P Bhatt OS/M14/V1/2004 24

For example:
The schedule() function invokes the switch_to() Assembly
language function to perform process switching.
The code for switch_to() is stored in the
include/asm/system.h file so depending on the target system
,the asm symbolic link is set to asm-i386 or asm-s390 etc.

Tour Of Linux Kernel - 9

P.C.P Bhatt OS/M14/V1/2004 25

Virtual Machines Concept - 1

Time shared systems gives an illusion to a user that the
machine is to himself.

This is achieved by CPU scheduling.

With clever scheduling the user is offered a virtual machine.

The user may, for instance output on a virtual output device
by spooling.

P.C.P Bhatt OS/M14/V1/2004 26

Virtual Machines Concept - 2
We can now extend the notion to offer each user an illusion
of each one having one virtual machine - a replica of the
original machine as far as services are concerned

P.C.P Bhatt OS/M14/V1/2004 27

In fact this concept has been extended further by creating a
software layer which can make one machine offer another
machine’s operating environment.

For instance, on sun machine which uses a sparc processor
one can offer an intel machine behavior and then create
Microsoft’s operational environment.

Virtual Machines Concept - 3

