
P.C.P Bhatt OS/M12/V1/2004 1

AWK Tool in UNIX

Prof. P.C.P. Bhatt

P.C.P Bhatt OS/M12/V1/2004 2

Motivation for AWK

Unix as we know provides tools. AWK is a tool that
facilitates processing of structured data – more like what we
see as a record structure in Pascal or a struct in C – essentially
a data set with multiple fields in each element of the data.
Incidently AWK as a name comes from the names of three
persons Profs. Aho, Weinberger and Kernighan who were
responsible for creating this tool
Such a tool very useful for data-processing as in processing of
records or even string processing like what we can now do
with PERL.

P.C.P Bhatt OS/M12/V1/2004 3

pattern {action}

pattern {action}

pattern {action}

.

.

.

The Basic Structure of AWK Program

P.C.P Bhatt OS/M12/V1/2004 4

Use awk command to run an awk program

awk ‘awk_program’ [input_files]

Running AWK Programs

P.C.P Bhatt OS/M12/V1/2004 5

If the ‘awk_program’ is very long then it is
better to keep the script on a file and then use
the –f option as shown below:

awk –f ‘awk_program_file_name’[input_files]

where awk_program_file_name contains the
awk program

Using FileNme as an Argument

P.C.P Bhatt OS/M12/V1/2004 6

File name: awk.test

bhatt 4.00 0

ulhas 3.75 2

ritu 5.0 4

vivek 2.0 3

Which denotes each employee’s name and pay
(rate per hour) and no. of hours worked.

Test Data File

P.C.P Bhatt OS/M12/V1/2004 7

bhatt@falerno[CRUD] => awk ‘$3 > 0 {print $1,$2*$3}’ awk.test

ulhas 7.5

ritu 20

vivek 6

Sample 1

P.C.P Bhatt OS/M12/V1/2004 8

The employees who did not work :

bhatt@falerno[CRUD] => awk ‘$3=0 {print $1}’awk.test

bhatt

The basic operation is to scan a sequence of lines searching
for the lines that match any of the patterns in the program
$3 > 0 match when the condition is true.

Example - 1

P.C.P Bhatt OS/M12/V1/2004 9

NF is built in variable that stores the no. of fields.

{print NF, $1, $NF } Which prints no. of fields, first and last

field.

NR, another built in variable is a no. of lines read so for and

can used the print stmt.

Example - 2 (Using NF and NR)

bhatt@falerno[CRUD] => awk ‘$3 > 0 {print NR, NF, $1, $NF }’

awk.test

3 3 ulhas 2

4 3 ritu 4

5 3 vivek 3

P.C.P Bhatt OS/M12/V1/2004 10

bhatt@falerno[CRUD] => awk ‘$3 > 0 { print “person “,
NR, $1, “be paid “, $2*$3, “dollars }’ awk.test

person 3 ulhas be paid 7.5 dollars

person 4 ritu be paid 20 dollars

person 5 vivek be paid 6 dollars

Example - 3
The formatted data in files is usually devoid of any redundancy.
However, one needs to generate verbose output. This requires
that we get the values and interspread the desired strings and
generate a verbose and meaningful output. In this example we
will demonstrate such a usage.

P.C.P Bhatt OS/M12/V1/2004 11

ulhas be paid $ 7.50 dollars

ritu be paid $ 20.5 dollars

vivek be paid $ 6.00 dollars

One can use printf to format the output like in C programs.

Example - 3 (Formatting the Output)

bhatt@falerno[CRUD] => awk ‘$3 > 0 {print (“%-8s be paid
$%6.2f dollars \n”, $1, $2*$3, “dollars”}’ awk.test

P.C.P Bhatt OS/M12/V1/2004 12

Awk is excellent for data validation

NF !=3 … no. of fields not equal to 3

$2 < 2.0 …. Wage rate below min. stipulated

$2 > 10.0 .. ……… exceeding max. ……….

$3 < 0 ….no. of hours worked –ve etc

Example - 4 (Data Validation)

P.C.P Bhatt OS/M12/V1/2004 13

Tabulation can be done by using

BEGIN { print “Name Rate Hours “ }

Name Rate Hours
bhatt 4.00 0
ulhas 3.75 2
ritu 5.0 4
vivek 2.0 3

Example - 5 (Putting Headers and Footers)

bhatt@falerno[CRUD] => awk ‘BEGIN { print “Name Rate
Hours” ; print””} { print }’ awk.test

P.C.P Bhatt OS/M12/V1/2004 14

A similar program with –f option.

file awk.prg is

NAME RATE HOURS
bhatt 4.00 0
ulhas 3.75 2
ritu 5.0 4
vivek 2.0 3

Example - 5 (Putting Headers and Footers)

bhatt@falerno[CRUD] => !a awk –f awk.prg awk.test

BEGIN { print “NAME RATE HOURS”; print ”’ }

{print $1, “ “,$2,” “,$3,”……..”}

P.C.P Bhatt OS/M12/V1/2004 15

Now we shall attempt some computing within awk. To
perform computations we may sometimes need to employ
user-defined variables. In this example “pay”shall be used
as a user defined variable. The program accumulates the
total amount to be paid in “pay”. So the printing is done
after the last line in the data file has been processed, i.e. in
the END segment of awk program. In NR we obtain all the
records processed (so the number of employees can be
determined). We are able to do the computations like
“pay” as a total as well as compute the average salary as
the last step.

User Defined Variables in AWK

P.C.P Bhatt OS/M12/V1/2004 16

File name: prg2.awk
BEGIN { print "NAME RATE
HOURS";print "" }
{pay = pay+$2*$3}
END {print NR "emplayees"

print "total amount paid is : ",pay
print "with the average being :",pay/NR}

NAME RATE HOURS
4 employees
Total amount paid is : 33.5
With the average being : 8.375

bhatt@falerno[CRUD] => !a awk –f prg2.awk awk.test

Example - 6 (User Defined Functions)

P.C.P Bhatt OS/M12/V1/2004 17

There are some built in functions that can be useful. For
instance , length function helps one to compute the length of a
field.
prg4.awk
{nc = nc + length($1)+ length($2) + length($3) + 4}
{nw = nw + NF}
END { print nc " characters and "; print " "

print nw " words and " ; print " "
print NR, " lines in this file "}

bhatt@falerno[CRUD] => !a awk –f prg4.awk awk.test
53 characters and
12words and
4 lines in this file

Example – 7 (Built in Functions)

P.C.P Bhatt OS/M12/V1/2004 18

Control Flow Statements :

if-else

while loop

for loop

Controlling The Sequence of Operations
in AWK

We shall explore the examples for each statement.

P.C.P Bhatt OS/M12/V1/2004 19

Prg5.awk
BEGIN {print "NAME RATE HOURS"; print ""}
$2 > 6 {n = n+1 ; pay = pay + $2*$3}
$2 > maxrate {maxrate = $2; maxemp= $1}
{ emplist = emplist $1 “” }
{last = $0 }
End{print NR "employees in the company "
if (n>0) { print n," employees in this bracket of salary . "

print " with an average salary of ", pay/n , "dollars"
}else print "no employees in this bracket of salary . “
print "highest salary paid rate is for "maxemp ,"@
of:",maxrate
print emplist
print “”}

Using if- else Statement - 1

P.C.P Bhatt OS/M12/V1/2004 20

The result is shown below:

bhatt@falerno[CRUD] => !a awk -f prg5.awk data.awk

4 employees in the company
no employees in this bracket of salary .
highest salary paid rate is for ritu @ of: 5.0
bhatt ulhas ritu vivek

Using if- else Statement - 2

P.C.P Bhatt OS/M12/V1/2004 21

#compound : interest computation .
#input : amount rate yrs.
#output : compounded value at the end of each year.
{i = 1; x = $1;
while (i <= $3)

{x = x + (x*$2)
printf("\t%d\t%8.2f\n",i, x)
i = i+1
}
}

Using While Loop - 1
In this example, we simply compute the compound interest
that accrues each year for a five year period.

P.C.P Bhatt OS/M12/V1/2004 22

The result is shown below:

bhatt@falerno[CRUD] => !a awk -f prg6.awk data.awk

1000 0.06 5
1 1060.00
2 1123.60
3 1191.02
4 1262.48
5 1338.23

Using While Loop - 2

P.C.P Bhatt OS/M12/V1/2004 23

reverse - print the input in reverse order ...
BEGIN
{print "NAME RATE HOURS";print ""}
{line_ar [NR] = $0}
#remembers the input line in array line_ar
END {
#prepare to print in reverse order as input is over
now

for (i=NR; i >=1; i = i-1)
print line_ar[i]

}

Using “for” Statement - 1

P.C.P Bhatt OS/M12/V1/2004 24

The result is shown below:

bhatt@falerno[CRUD] => !a awk -f prg6.awk data.awk

NAME RATE HOURS

vivek 2.0 3
ritu 5.0 4
ulhas 3.75 2
bhatt 4.00 0

Using “for” Statement - 2

P.C.P Bhatt OS/M12/V1/2004 25

Print the total no. of input lines : END { print NR}

Print the 10th input line : NR = 10

Print the last field of each line : {print $NF}

Print the last field of last line : { field = $NF}END { print field}

Print every input line with more than 4 fields : NF >4

Print every input line i which the last field is more than 4 :

$NF > 4

AWK One Liners - 1

P.C.P Bhatt OS/M12/V1/2004 26

Print total number of fields in all input lines

{nf = nf + NF}

END { print nf }

Print the total no. of lines containing bhatt

/bhatt/ {nlines = nlines + 1}

END { print nlines }

Print the largest first field and the line that contains
it : $1 > max {max = $1;maxline = $0}

END { print max, maxline }

AWK One Liners - 2

P.C.P Bhatt OS/M12/V1/2004 27

Print every line that has at least one field: NF>0

Print every line with > 80 chs: length($0) > 80

Print the no. of fields followed by the line it self

{print NF, $0}

Print the first two fields in opposite order

{print $2, $1}

Exchange the first two fields of every line and then
and then print the line

{temp = $1; $1=$2, $2=temp , print}

AWK One Liners - 3

P.C.P Bhatt OS/M12/V1/2004 28

Print every line with first field replaced by line no. :

{$1 = NR; print }

Print every line after erasing second field :

{ $2 = “ “ ; print }

Print in reverse order the fields of every line

{for (i = NF ; i > 0 ; i = i – 1)print (“%s “,$i) printf
(“ \n“)}

AWK One Liners - 5

P.C.P Bhatt OS/M12/V1/2004 29

Print the sums of fields of every line :

{ sum = 0

for (i = 1; i <= NF ; i = i – 1) sum = sum + $i print sum}

Add up all the fields in all lines and print the sum

{for i =1; I <= NF; i = i+1) sum = sum + $I}

END { print sum}

Print every line after replacing each field by its absolute
value:

{for (i = 1; i <= NF; i = i+1) if ($i < 0) $i = -$i Print}

AWK One Liners - 6

P.C.P Bhatt OS/M12/V1/2004 30

1. BEGIN{statements}: These statements are executed once
before any input is processed.

2. END{statements}: These statements are executed once
all the lines in the data input file have been read.

3. expr.{statements}: These statements are executed at each
input line where the expr is true.

4. /regular expr/ {statements}: These statements are
executed at each input line that contains a string matched
by regular expression.

AWK Grammar - 1

P.C.P Bhatt OS/M12/V1/2004 31

5. compound pattern {statements}: A compound pattern
combines patterns with && (AND), || (OR) and ! (NOT)
and parentheses;the statements are executed at each input
line where the compound pattern is true.the expr is true .

6. pattern1, pattern2 {statements}: A range pattern matches
each input line from a line matched by “pattern1" to the
next line matched by “pattern2", inclusive; the statements
are executed at each matching line.

7. “BEGIN" and “END" do not combine with any other
pattern. “BEGIN" and “END“ also always require an
action. Note “BEGIN" and “END" technically do not
match any input line. With multiple “BEGIN" and “END"
the action happen in the order of their appearance.

AWK Grammar - 2

P.C.P Bhatt OS/M12/V1/2004 32

8. A range pattern cannot be part of any other pattern.

9. “FS" is a built-in variable for field separator.

AWK Grammar - 3

P.C.P Bhatt OS/M12/V1/2004 33

String Matching Patterns :

1. /regexpr/ matches an input line if the line contains the
specified substring. As an example : /India/ matches
“India " (with space on both the sides), just as it detects
presence of India in “Indian".

2. expr ~ /regexpr/ matches, if the value of the expr contains
a substring matched by regexpr. As an example, $4 ~
/India/ matches all input lines where the fourth field
contains “India" as a substring.

3. expr !~/regexpr/ same as above except that the condition
of match is opposite. As an example, $4 !~/India/ matches
when the fourth field does not have a substring “India".

AWK Grammar - 4

P.C.P Bhatt OS/M12/V1/2004 34

Regular Expressions - 1

The following is the summary of the Regular
Expression matching rules.

: matches exactly three character strings^...$

: matches single character strings^.$

: matches a string consisting of the single character C^C$

: matches a C at the end of a stringC$

: matches a C at the beginning of a string^C

P.C.P Bhatt OS/M12/V1/2004 35

: one or more occurrence+

: zero or one occurrence?

: zero or more occurrences*

: matches a period at the end of a string\.$

: matches any three consecutive characters...

Regular Expressions - 2

P.C.P Bhatt OS/M12/V1/2004 36

Built-in Variables

Built-in Variables in AWK.

P.C.P Bhatt OS/M12/V1/2004 37

String Functions

Various String Function in AWK.

