Q) What is the average waiting time for the processes below using FCFS scheduling.

Process	Duration	Order	Arrival Time
P1	24	1	0
P2	3	2	0
P3	4	3	0

a) 17

b) 10.5

c) 20

d) 15

Solution:

Waiting time for P1 = 0 Waiting time for P2 = 24 Waiting time for P3 = 24+3 = 27

Avg. Waiting time = (0+24+27)/3 = 17

Q) What is the average waiting time for the processes below using SRTF scheduling algorithm.

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4
a) 4 b) 3 c) 4.25 d) 5		

Solution:

SRTF is a preemptive version of SJF. Execution order: P1(2 seconds) \rightarrow P2 (2 seconds) \rightarrow P3 (1 second) \rightarrow P2 (2 seconds) \rightarrow P4 (4 seconds) \rightarrow P1 (5 seconds)

Waiting time for P1: 9 seconds Waiting time for P2: 1 second Waiting time for P3: 0 seconds Waiting time for P4: 2 seconds

Avg. Waiting time = (9+1+0+2)/4 = 3

Q) The transmission delay incurred in sending a 1500 bytes packet over a 100 Mbps link is

- a) 15secs
- b) 120 micro secs
- c) 12 micro secs
- d) 100 secs

Solution:

<u>100 Mb</u> can be sent in <u>1 second</u> <u>1500*8 bits can be sent in ____?</u>

 $(1500^{*}8)/(100^{*}10^{6}) = 120^{*}10^{-6} = 120$ micro seconds

Q) In a very lightly loaded network without many network packets and also on a very high bandwidth link, what would be the nodal delay if proessing delay is 10micro seconds and propagation delay is 100 micro seonds?

a) 110 micro seconds
b) 130 micro seconds
c) 150 micro seconds
d) 200 micro seconds

Solutions:

100 micro seconds + 10 micro seconds = 110 micro seconds

Q) If the Length of the packet to be transferred is 7.5 Mbits and the transmission speed is 1.5Mbps, then the transmission delay from one host to the next host will be:

- a) 5 seconds
- b) 15 seconds
- c) 10 seconds
- d) Insufficient information

Solution:

<u>1.5 *10^6 bits</u> can be sent in <u>1 second</u>

<u>7.5 * 10^6 bits</u> can be sent in _____?

 $(7.5*10^{6})/(1.5*10^{6}) = 5$ seconds