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What is Linear Algebra

Linear Algebra

Linear algebra is the branch of mathematics concerning vector spaces and
linear mappings between such spaces. It includes the study of lines, planes,
and subspaces, but is also concerned with properties common to all vector
spaces.

Why do we study Linear Algebra?

Provides a way to compactly represent & operate on sets of linear
equations.

In machine learning, we represent data as matrices and hence it is
natural to use notions and formalisms developed in Linear Algebra.
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Introduction to LinAl

Consider the following system of equations:

4x1 − 5x2 = −13

−2x1 + 3x2 = 9

In matrix notation, the system is more compactly represented as:

Ax = b

A =

[
4 −5
−2 3

]
b =

[
−13

9

]
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Vector Space

Definition

A set V with two operations + and · is said to be a vector space if it is
closed under both these operations and satisfies the following eight axioms.

1 Commutative Law

x + y = y + x , ∀x , y ∈ V

2 Associative Law

(x + y) + z = x + (y + z), ∀x , y , z ∈ V

3 Additive identity

∃0 ∈ V s.t x + 0 = x , ∀x ∈ V

4 Additive inverse

∀x ∈ V , ∃x̃ s.t x + x̃ = 0
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Vector Space (Contd..)

5 Distributive Law

α · (x + y) = α · x + α · y , ∀α ∈ R, x , y ∈ V

6 Distributive Law

(α + β) · x = α · x + β · x , ∀α, β ∈ R, x ∈ V

7 Associative Law

(αβ) · x = α · (β · x), ∀α, β ∈ R, x ∈ V

8 Unitary Law
1 · x = x , ∀x ∈ V
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Subspace

Definition

Let W be a subset of a vector space V . Then W is called a subspace of
V if W is a vector space.

Do we have to verify all 8 conditions to check whether a given subset
of a vector space is a subspace?

Theorem: Let W be a subset of a vector space V . Then W is a
subspace of V if and only if W is non-empty and
x + αy ∈W , ∀x , y ∈W , α ∈ R
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Norm

Definition

Norm is any function f : Rn → R satisfying:

1 ∀x ∈ Rn, f (x) ≥ 0 (non-negativity)

2 f (x) = 0 iff x = 0 (definiteness)

3 ∀x ∈ Rn, f (tx) = |t|f (x) (homogeneity)

4 ∀x , y ∈ Rn, f (x + y) ≤ f (x) + f (y) (triangle inequality)

Example - lp norm

||x ||p = (
n∑

i=1

|xi |p)
1
p

Matrices can have norms too - e.g., Frobenius norm

||A||F =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
tr(ATA) (1)
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Range Of A Matrix

The span of a set of vectors X = {x1, x2, · · · xn} is the set of all
vectors that can be expressed as a linear combination of the vectors in
X.
In other words, set of all vectors v such that v =

∑i=|X |
i=1 αixi , αi ∈ R

The range or columnspace of a matrix A, denoted by R(A) is the
span of its columns. In other words, it contains all linear
combinations of the columns of A. For instance, the columnspace of

A =

1 0
5 4
2 4

 is the plane spanned by the vectors

1
5
2

 and

0
4
4


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Nullspace Of A Matrix

Definition

The nullspace N(A) of a matrix A ∈ Rm×n is the set of all vectors that
equal 0 when multiplied by A. The dimensionality of the nullspace is also
referred to as the nullity of A.

N(A) = {x ∈ Rn : Ax = 0}

Note that vectors in N(A) are of dimension n, while those in R(A) are
of size m, so vectors in R(AT ) and N(A) are both of dimension n.
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Example

Consider the matrix

A =

1 0
5 4
2 4


The nullspace of A is made up of vectors x of the form

[
u
v

]
, such that

1 0
5 4
2 4

[u
v

]
=

0
0
0


The nullspace here only contains the vector (0,0).
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Another Example

Now, consider the matrix

B =

1 0 1
5 4 9
2 4 6


Here, the third column is a linear combination of the first two columns.
Here, the nullspace is the line of all points x = c , y = c , z = −c .
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Linear Independence and Rank

Definition

A set of vectors {x1, x2, · · · xn} ∈ Rn is said to be (linearly) independent
if no vector can be represented as a linear combination of the remaining
vectors.

i.e., if xn =
∑n−1

i=1 αixi for some scalar values α1, · · · , αn−1 ∈ R, then
we say that the vectors {x1, x2, · · · xn} are linearly dependent;
otherwise, the vectors are linearly independent

The column rank of a matrix A ∈ Rmxn is the size of the largest
subset of columns of A that constitute a linearly independent set

Similarly, row rank of a matrix is the largest number of rows of A
that constitute a linearly independent set
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Properties Of Ranks

For any matrix A ∈ Rmxn, it turns out that the column rank of A is
equal to the row rank of A, collectively as the rank of A, denoted as
rank(A)

Some basic properties of the rank:
1 For A ∈ Rmxn, rank(A) ≤ min(m, n).

If rank(A) = min(m, n), A is said to be full rank
2 For A ∈ Rmxn, rank(A) = rank(AT )
3 For A ∈ Rmxn,B ∈ Rnxp, rank(AB) ≤ min(rank(A), rank(B))
4 For A,B ∈ Rmxn, rank(A + B) ≤ rank(A) + rank(B)
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Orthogonal Matrices

A square matrix U ∈ Rn×n is orthogonal iff

All columns are mutually orthogonal vT
i vj = 0,∀i 6= j

All columns are normalized vT
i vi = 1,∀i

If U is orthogonal, UUT = UTU = I . This also implies that the
inverse of U happens to be its transpose.

Another salient property of orthogonal matrices is that they do not
change the Euclidean norm of a vector when they operate on it, i.e
||Ux ||2 = ||x ||2.
Multiplication by an orthogonal matrix can be thought of as a pure
rotation,i.e., it does not change the magnitude of the vector, but
changes the direction.
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Quadratic Form of Matrices

Given a square matrix A ∈ Rnxn and a vector x ∈ Rn, the scalar value
xTAx is called a quadratic form

A symmetric matrix A ∈ Sn is positive definite (PD) if for all non-zero
vectors x ∈ Rn, xTAx > 0

Similarly, positive semidefinite if xTAx ≥ 0, negative definite if
xTAx < 0 and negative semidefinite if xTAx ≤ 0

One important property of positive definite and negative definite
matrices is that they are always full rank, and hence, invertible.

Gram matrix: Given any matrix A ∈ Rmxn, matrix G = ATA is
always positive semidefinite.
Further if m ≥ n, then G is positive definite.
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Eigenvalues & Eigenvectors

Given a square matrix A ∈ Rn×n, λ is said to be an eigenvalue of A
and vector ~x the corresponding eigenvector if

A~x = λ~x

Geometrical interpretation
We can think of the eigenvectors of a matrix A as those vectors which
upon being operated by A are only scaled but not rotated.

Example

A =

[
6 5
1 2

]
, ~x =

[
5
1

]

A~x =

[
35
7

]
= 7~x
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Characteristic Equation

Trivially, the ~0 vector would always be an eigenvector of any matrix.
Hence, we only refer only to non-zero vectors as eigenvectors.

Given a matrix A, how do we find all eigenvalue-eigenvector pairs?

A~x = λ~x

A~x − λI~x = 0

(A− λI )~x = 0

The above will hold iff
|(A− λI )| = 0

This equation is also referred to as the characteristic equation of A.
Solving the equation gives us all the eigenvalues λ of A. Note that
these eigenvalues can be complex.
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Properties

1 The trace tr(A) of a matrix A also equals the sum of its n eigenvalues.

tr(A) =
n∑

i=1

λi

2 The determinant |A| is equal to the product of the eigenvalues.

|A| =
n∏

i=1

λi

3 The rank of a matrix is equal to the number of non zero eigenvalues
of A.

4 If A is invertible, then the eigenvalues of A−1 are of form 1
λi

, where λi
are the eigenvalues of A.
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Distinct Eigenvalues

Theorem
If a real matrix An×n has all eigenvalues distinct, then all its
eigenvectors are linearly independent

Proof
We will do a proof by means of contradiction. Suppose a matrix A
has n distinct eigenvalues, but a set of k eigenvectors is linearly
dependent, and k is chosen so that it is the smallest such set that is
linearly dependent.
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Proof

i=k∑
i=1

ai ~vi = ~0

(A− λk I )
i=k∑
i=1

ai ~vi = ~0

i=k∑
i=1

(A− λk I )ai ~vi = ~0

i=k∑
i=1

ai (λi − λk)~vi = ~0

Since the eigenvalues are distinct, λi 6= λk∀i 6= k . Thus the set of (k − 1)
eigenvectors is also linearly dependent, violating our assumption of it being
the smallest such set. This is a result of our incorrect starting assumption.
Hence proved by contradiction.
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Diagonalization

Given a matrix A, we consider the matrix S with each column being an
eigenvector of A

S =


...

... . . .
...

~v1 ~v2 . . . ~vn
...

... . . .
...



AS =


...

... . . .
...

λ1 ~v1 λ2 ~v2 . . . λn ~vn
...

... . . .
...



AS =


...

... . . .
...

~v1 ~v2 . . . ~vn
...

... . . .
...


λ1 0 . . .

...
. . . . . .

0 . . . λn


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Diagonalization

AS = SΛ

A = SΛS−1

S−1AS is diagonal

Note that the above result is dependent on S being invertible. In the
case where the eigenvalues are distinct, this will be true since the
eigenvectors will be linearly independent
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Properties of Diagonalization

1 A square matrix A is said to be diagonalizable if ∃S such that
A = SΛS−1.

2 Diagonalization can be used to simplify computation of the higher
powers of a matrix A, if the diagonalized form is available

An = (SΛS−1)(SΛS−1) . . . (SΛS−1)

An = SΛnS−1

Λn is simple to compute since it is a diagonal matrix.
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Eigenvalues & Eigenvectors of Symmetric Matrices

Two important properties for a symmetric matrix A:
1 All the eigenvalues of A are real
2 The eigenvectors of A are orthonormal, i.e., matrix S is orthogonal.

Thus, A = SΛST .

Definiteness of a symmetric matrix depends entirely on the sign of its
eigenvalues. Suppose A = SΛST , then

xTAx = xTSΛST x = yTΛy =
n∑

i=1

λiy
2
i

Since y2i ≥ 0, sign of expression depends entirely on the λi ’s. For
example, if all λi > 0, then matrix A is positive definite.
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Eigenvalues of a PSD Matrix

Consider a positive semi definite matrix A. Then, ∀~x which are
eigenvectors of A.

~xTA~x ≥ 0

λ~xT~x ≥ 0

λ||~x ||2 ≥ 0

Hence, all eigenvalues of a PSD matrix are non-negative.
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Singular Value Decomposition

1 We saw that diagonalization is applicable only to square matrices. We
need some analogue for rectangular matrices too, since we often
encounter them, e.g the Document-Term matrix. For a rectangular
matrix, we consider left singular and right singular vectors as two
bases instead of a single base of eigenvectors for square matrices.

2 The Singular Value Decomposition is given by A = UΣV T where
U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n.
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Singular Value Decomposition

1 U is such that the m columns of U are the eigenvectors of AAT , also
known as the left singular vectors of A.

2 V is such that the n columns of V are the eigenvectors of ATA, also
known as the right singular vectors of A.

3 Σ is a rectangular diagonal matrix with each element being the square
root of an eigenvalue of AAT or ATA

Significance: SVD allows us to construct a lower rank approximation of a
rectangular matrix. We choose only the top r singular values in Σ, and the
corresponding columns in U and rows in V T
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Matrix Calculus

1 The Gradient
Consider a function f : <m×n → <. The gradient ∇Af (A) denotes
the matrix of partial derivatives with respect to every element of the
matrix A. Each element is given by (∇Af (A))ij = ∂f (A)

∂Aij

2 The Hessian
Suppose a function f : <n → < takes in vectors and returns real
numbers. The Hessian, denoted as ∇2

x f (x) or H is the n × n matrix

of partial derivatives. (∇2
x f (x))ij = ∂2f (x)

∂xi∂xj
. Note that the Hessian is

always symmetric.

3 Note that the Hessian is not the gradient of the gradient, since the
gradient is a vector, and we cannot take the gradient of the vector.
However, if we do take elementwise gradients of every element of the
gradient, then we can construct the Hessian.
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Differentiating Linear and Quadratic Functions

If f (x) = bT x , for some constant b ∈ <n. Let us find the gradient of f.

f (x) =
i=n∑
i=1

bixi

∂f (x)

xk
= bk

We can see that ∂bT x
∂x = b. We can intuitively see how this relates to

differentiating f (x) = ax with respect to x when a and x are real scalars.
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Differentiating Linear and Quadratic Functions

Consider the function f (x) = xTAx where x ∈ Rn and A ∈ <n×n is a
known symmetric matrix.

f (x) =
i=n∑
i=1

j=n∑
j=1

Aijxixj

∂f (x)

∂xk
=

∂

∂xk

[∑
i 6=k

∑
j 6=k

Aijxixj +
∑
i 6=k

Aikxixk +
∑
j 6=k

Akjxkxj + Akkxk
2

]
∂f (x)

∂xk
=
∑
i 6=k

Aikxi +
∑
j 6=k

Akjxj + 2Akkxk

∂f (x)

∂xk
=

n∑
i=1

Aikxi +
n∑

j=1

Akjxj

∂f (x)

∂xk
= 2

n∑
i=1

Akixi
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Differentiating Linear and Quadratic Functions

Thus ∇x(xTAx) = 2Ax . Now, let us find the Hessian H.

∂

∂xk

∂f (x)

∂xl
=

∂

∂xk
(2

i=n∑
i=1

Alixi ) = 2Akl

Hence, ∇2
x(xTAx) = 2A.
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