Variations of Turing Machines

The variants are

(1

) Turing machines with two-way infinite tapes
(i1) multitape Turing machines

(111) multihead Turing machines

(iv) nondeterministic Turing machines
(v)

Turing machines with two-dimensional tapes

Two-Way Infinite Tape Turing Machine

A two-way infinite tape Turing machine (TTM) is a Turing machine with its
mmput tape mfinite in both directions, the other components being the same
as that of the basic model. We see in the following theorem that the power
of T'T'M 1s no way superior of that of the basic TM.

That a one-way TM M, can be simulated by a two-way TM Mp can be
seen easily. Mp puts a # to the left of the leftmost nonblank and moves
its head right and simulates M. If Mp reads # again, it halts rejecting the
mput as this means My tries to move off the left end of the tape.

Proof l'he tape of the My at any mstance 1s of the form

bl... |las|a_y |ag|ay|a|... |a, | b

where ag 1s the symbol in the cell scanned by M p nitially. My can represent
this situation by two tracks

ety (lq o
|a_i | as

When Mp 1s to the right of ap, the simulation 18 done on the upper track.
When Mp 1s to the left of ag, the simulation 1s done in M on the lower track.
The 1mitial configuration would be

ag | dq | ... Ay

bl bl AP

My = (K", X, I", g}, F') where

K'={g)} U (K x {1,2})

Y=Y x(ZuU{#})

I"=Tx (TU{#})

F' = {[q,1],[q,2]|q € F'}

o' 1s defined as follows:

If 6(q,a) = (¢',c, L/R) and if the head of Mp is to the right of ag we have
0([q, 1], [a, b]) = ([¢', 1], [c, b], L/ R); simulation is done on the upper track 1.
If Mp 1s to the left of the mitial position, simulation 1s done on the lower

track.

It 6(q,b) = (¢',c, L/ R)

8'([q,2], [a,b]) = ([d, 2], [a,c], R/L)

The mnitial move will be

0'(qo, lao, p]) = (la,1], [A, #], R)

if 6(qo, ao) = (¢, A, R)

0'(qo, lao, B]) = (la,2], [A, #], R)

if 6(qo, ao) = (g, A, L)

When reading the leftmost symbol Mp behaves as follows:

Ifd(g,a) = (p, A, R)

o([q,1/2],[a,#]) = (p, 1], [A, #], R)

It 6(q,a) = (p, A, L)

(g, 1/2],[a,#]) = (Ip, 2], [A, #], R)

while simulating a move when Mp 1s to the left of the mitial position, M
does 1t in the lower track always moving in a direction opposite to that of
Mp. If Mp reaches an accepting state gy, My reaches [gf, 1] or [gy,2] and
accepts the mput.

Multitape Turing Machine

Suppose we have a 3-tape TM.

> |t

A multitape TM can be simulated by a single tape TM.

Proof Let M = (K, X, 1',d,q0, F') be a k-tape Turing machine. It can be
simulated by a single tape TM M’ having 2k tracks. Odd numbered tracks
contain the contents of M’s tapes.

X

X

S

To simulate a move of the multitape TM M, the single tape TM M’ makes
two sweeps, one from left to right and another from right to left. It starts
on the leftmost cell which contains a X in one of the even tracks. While
moving from left to right, when it encounter a X, it stores the symbol above
it 1 1ts finite control. It keeps a counter as one of the component of the
state to check whether it has read the symbols from all the tapes. After the
left to right move 1s over, depending on the move of M determined by the
symbols read, the single tape TM M’ makes a right to left move changing the
corresponding symbols on the odd tracks and positioning the X's properly
in the even numbered tracks. To simulate one move of M, M’ roughly takes
(it may be slightly more depending on the left or right shift of X') a number
of steps equal to twice the distance between the leftmost and the rightmost
cells containing a X in an even numbered track. When M’ starts all X's will
be in one cell. After i moves the distance between the leftmost and rightmost
X can be at most 2i. Hence to simulate n moves of M, M’ roughly takes

Z 2(2i) = Z 4i = O(n?) steps. If M reaches a final state, M' accepts and
i=1 i=1
halts. O

Multihead Turing Machine
A multithead T'M is a single tape 1M having k heads

reading symbols on the same tape. In one step all the heads sense the scanned
symbols and move or write independently.

A multihead TM M can be simulated by a single head TM M’

Proof Let M have k heads. Then M’ will have &+ 1 tracks on a single tape.
Omne track will contain the contents of the tape of M and the other tracks
are used to mark the head positions. One move of M is simulated by M’ by
making a left to right sweep followed by a right to left sweep. The simulation
1s similar to the one given in Theorem 10.1.2. One fact about which one has
to be careful here 1s the time when two heads scan the same symbol and trv
to change 1t differently. In this case some priority among heads has to be

used.

Nondeterministic Turing Machine 4: K «xT'— P(K =T x {L,R})

Every NTM can be simulated by a deterministic TM (basic model).

Computation of a NTM ‘N’ on any input w 1s represented as a tree. Each
branch 1s a branch of nondeterminism. Each node 1s a configuration of N.
Root will be the start configuration. One has to traverse the whole tree in
a ‘breath-first” manner to search for a successful path. One cannot proceed
by ‘depth-first’ search as the tracing may lead to an infinite branch while
missing the accepting configurations of some other branches.

Using a multi-tape TM one can simulate N on a given mmput. For each
path of the tree, simulation 1s done on a separate tape. The paths are
considered one-by-one in the mcreasing order of depth and among paths of
equal length, the paths are considered from left to right.

Let us see how the mmplementation works on a DTM with the tapes.
There 1s an input tape containing imput which 1s never altered. Second tape
will be a simulation tape which contains a copy of N's tape content on some
branch of its nondeterministic computation. The third tape keeps track of
the location of the DTM in NTM’s computation tree. The three tapes may
be called as mput tape, simulation tape and address tape.

Suppose every node in the tree has at most b children. Let every node in
the tree have address which is a string over the alphabet ¥, = {1,2,... b}
(say). To obtain a node with address 145, start at the root going to its
child numbered 1, move to its 4th child and then move to the nodes that
corresponds to 1ts 5th child. Ignore addresses that are meaningless. Then n
a breath-first manner check the nodes (configurations) in lexicographic or-
der as €,1,2,3,...,b,11,12,13,....1b,21,22,. .., 2b,. .., 111,112, ... (if ex-

1st). Then DTM on input w = aq...a, works as follows. Place w on the

mput tape and the others are empty. Copy the contents of the mput tape
to simulation tape. Then simulate NTM’s one nondeterministic branch on
the simulation tape. On each choice, consult the address tape for the next
move. Accept if the accepting configuration is reached. Otherwise abort this
branch of simulation. The abortion will take place for the following reasons.

e symbols on address tape are all used.
e rejecting configurations encountered
e nondeterministic choice 1s not a valid choice.

Once the present branch is aborted, replace the string on the address tape
with the next string in lexicographic ordering. Simulate this branch of the

NTM as before. d

Two Dimensional Turing Machine

The Turing machine can have two dimensional tapes. When the head 1s
scanning a symbol, 1t can move left, right, up or down. The smallest rectangle
containing the nonblank portion is m x n, then it has m rows and n columns.
A one dimensional TM which tries to simulate this two dimensional TM will
have 2 tapes. On one tape this m rows of n symbols each will be represented
as m blocks of size n each separated by markers. The second tape 1s used as
scratch tape. When the two dimensional TM’s head moves left or right, 1t 1s
simulated in a block of the one dimensional TM. When the two dimensional
TM’s head moves up or down, the one dimensional TM’s head moves to the
previous block or the next block. To move to the correct position in that
block, the second tape 1s used. If m or n increases, number of blocks or the
size of the blocks 1s increased.

Restricted Turing Machines

Turing machine can be restricted leading to multi-stack
Turing machines, counter machines, etc, without losing out on accepting
power.

A deterministic Turing machine with read only input and

two storage tape is called a Deterministic Two way Stack Turing Machine
(DTSTM). When the head of the DTSTM tries to move left on the tapes, a
blank symbol b wnll be printed.

There exists a DTSTM that simulates the basic TM on any given input.

One can easily simulate a TM with a DTSTM. At any point of time one
can see the symbol being scanned by the head of the TM, placed on the top
of one stack, the symbols to its left on this stack below the symbols scanned,
placing the symbols closer to the present head position, closer to the top of
the stack. Similar exercise 1s done for the symbols to the right of the present
head position by placing them in the second stack. Hence clearly a move of
the Turing machine has a corresponding action on the mput and stacks of
the DTSTM and the simulation can be done.

The next variant is a ‘counter’ machine. A ‘counter’ machine can store
finite number of integers each counter storing a number. The counters can be
either mcreased or decreased and cannot cross a ‘stack’ or ‘counter’ symbol
Z’. In other words it 1s a machine with stacks having only two stack symbols
Z and b (blank). Every stack will have Z as its initial symbol. A stack may
hold a string of the form A'Z. i > 0, indicating that the stack holds an integer
1 1n 1t. This stack can be increased or decreased by moving the stack head
up or down. A counter machine with 2-stacks is illustrated in the following
figure.

input L ~
/ Finite output
—_— - | |
_ control |
b A

/N

Y

o
- é"-

LI

N &

For a basic TM, there erists an equivalent 4-counter Turing machine.

Proof The equivalence 1s shown between a two-stack TM (DTSTM) and a
4-counter machine. We have already seen that a DTSTM and basic TM are
equivalent.

We now see how to simulate each stack with two counters. Let X, X,
..., X¢_1 be the (t — 1) stack symbols. Each stack content can be uniquely
represented by an integer in base ‘t". Suppose X; X, ... X, 1s the present
stack content with X; on the top in DTSTM. Then the integer count will
be

k=i, +ti, | +t%, o+ - +t""liy.

For example if the number of stack symbols used 1s 3, and an iteger for the
stack content XoX3.X X5 will be

E=214144*314%2=172.

Suppose X, 1s to be put on the top of the stack, then the new integer
counter has to be kt +r. The first counter contains k£ and the second counter
contains 0 at this point. To get ikt + r in the second counter, the counter
machine has to move the first counter head to the left by one cell and move
the head of the second counter ? cells to the right. Thus when the first
counter head reaches ‘Z’ the second counter contains kt. Now add r to the
second counter to get kt + r.

If it 1s a clear move of the stack, X, 1s to be cleared. Then £ has to be
k

reduced to [;], the mnteger part of % Now the adjustment 1s decrementing

the count of the first counter in steps and increment the second counter by
one. This repeats till the first counter becomes zero.

Now by the above exercise, one 1s able to 1dentify the stack symbol on
the stack from the two counters thus designed. That 1s k& mod ¢ 1s the index
i, and hence X, 1s the top symbol of the stack. O

For a basic TM, there exrists an equivalent 3-counter TM.

Proof The idea of the simulation 1s similar to the previous theorem. Instead
of having two counters for adjusting the two counters that correspond to two
stacks, one common counter 1s used to adjust the operation of pop, push or
change of the stack symbols. O

For a basic TM, there exists an equivalent 2-counter TM.

Proof The simulation i1s now done using the previous theorem. One has to
simulate the 3-counters by using 2-counters to get an equivalent result. Let
7,7 and k be the numbers in the three counters. We have to represent these
by a unique integer. Let m = 2'375% be the integer. Put this in one counter.
To mcrement say i, one has to multiply m by 2. This can be done using
the second counter as we have done earlier. Similarly for j and £ mcrement
can be done using the second counter. Any of i, 7, k will be zero whenever
m 18 not divisible by 2, 3 or 5 respectively. For example to say whether
j =0, copy m to the second counter and while copyving store in finite control
whether m 1s divisible by 2, 3 or 5. If it 18 not divisible by 4, then 7 = 0.
Finally to decrease 1, 7, k divide m by 2, 3, 5 respectively. This exercise 1s
also similar to the previous one except that the machine will halt whenever
m 1s not divisible by a constant by which we are dividing. O

There exists a TM with one tape and tape alphabet

{0,1, b} to recognize any recursively enumerable language L over {0, 1}.

Proof Let M = (K, {0,1},T, 6, gy, F') be a TM recognizing L. Now the tape
alphabet I' can be anything. Our aim 1s to construct an equivalent TM with
I' = {0,1, 4}. For that we encode each symbol of I". Suppose I' has ‘t’
symbols. We use binary codes to code each symbol of I' by ‘£ bits where
=l <t < 2F,

We now have to design another TM M’ with I = {0,1, A}. The tape
of M" will consists of coded symbols of I" and the input over {0,1}. The
simulation of one move of M by k& moves of M’ 1s as follows. The tape
head of M’ 1s mitially at the leftmost symbol of the coded mput. M’ has
to scan the next k& — 1 symbols to its right to make a decision of change of
state or overwrite or move left or right as per M. The TM M’ stores in its
finite control the state of M and the head position of M’ which i1s a number
between 0 to k— 1. Hence M’ clearly indicates at the end of a block of moves
whether one move of M 1s made or not. Once the finite control indicates 0’
as head position, 1t means this i1s time for the change on the tape, state as
per M’s instruction. If the thus changed state 1s an accepting state of M,
M" accepts.

One observation 1s that on the tape of M’, there has to be code for the
blank symbol of M. This i1s essential for simulating the blank of M by M.
Second observation is that any tape svmbol of M is directly coded in terms
of Os and 1s and as any string w 1s placed on the tape of M, the codes for
each symbol of w is concatenated and placed on the tape of M’. O

Any Turing machine can be simulated by an offline TM
having one storage tape with two symbols 0 and 1 where 0 indicates blank. A

blank (0) can be retained as 0 or replaced by 1 but a 0’ cannot be rewritten
at a cell with ‘1.

One can see from the previous result that even if the mput for L is not
over {0,1}, the above TM construction will work, because the input of L
over some other alphabet will be now coded and placed as mput for a TM
with tape alphabet {0,1, b}.

Also one can see that one can construct a multi-tape TM that uses only
two symbols 0.1 as tape alphabet to simulate any TM. One has to keep
the immput tape fixed with the mput. There will be a second tape with tape
symbols coded as binary symbols. This simulates moves of the original TM.
The newly constructed TM must have positions on the tape to indicate the
present head position, cells to indicate that the binary representation of the
symbol under scan 1s already copied. Each ID i1s copied on the third tape
after simulation of one move. If we take the mput alphabet {0, 1} we start
with the second tape (first tape is not necessary). In the third tape IDs are

copled one by one without erasing.

Turing Machines as Enumerators

The languages accepted by the Turing machines are recursively enumer-
able sets. One can think of a Turing machine as generating a language. An
enumerator 18 a Turing machine variant which generates a recursively enu-
merable language. One can think of such a Turing machine to have its output
on a printer (an output tape). That 1s the output strings are printed by the
output device printer. Thus every string that is processed freshly, 1s added
to the list, thereby printing 1t also.

The enumerator machine has an input tape, which i1s blank initially, an
output device which may be a printer. If such a machine does not halt, it
may perform printing of a list of strings infinitely. Let M be an enumerator
machine and G(M) be the list of strings appearing on output tape. We have
the following theorem for M.

Theorem 10.2.7 A language L s recursively enumerable if and only if there
erists an enumerator M such that G(M) = L.

Proof Let M be an enumerator such that L = G(M). To show that there
exists a Turing machine M recognizing L. Let w be an mput for M. Perform
the following two steps on w.

1. Run M and compare each output string of M with w.
2. If w appears on the output tape of M, accept w.

That is M accepts only those string that appear on the output tape of M.
Hence T(M) = G(M).

Conversely let M be a Turing machine such that L = T(M). We construct
an enumerator M that prints every string of L as follows.

Let ¥ be the alphabet of L and wy, we, w3, wy, ... be all possible strings
over .

The enumerator machine M will do the following for any mmput from »*.

3. If M accepts any string w; print the corresponding string w;.

Clearly if any string w is accepted by M, it will be output by the enumerator
M. In the above procedure one can see that there will be repeated printing
of a string w. It 1s straightforward to see G(M) =L =T (M).

If L is a recursive set (a set accepted by a TM which halts on all inputs),
then there exists an enumerator M for L which will print the strings in L in
canonical order.

Equivalence Between Turing Machines
and Type 0 Languages

If L is the language generated by an unrestricted grammar

G =(N,T,P,5S), then L is recognised by a TM.

Proof For G, we construct a Turing machine M with two tapes such that
on one tape we put the mput w and the other tape is used to derive w
using F. Each time a rule from P i1s applied, compare the two tapes for
acceptance or rejection of w. Imitially put w on one tape. Then M mitially
places S on the second tape. Nondeterministically select a rule S — a from
P, replace S by a on the second tape. Now compare the tapes, if they
agree accept w. Otherwise, from the present string a, choose a location ‘7’
nondeterministically such that 5 1s a subword occurring in « from position
i. Choose a rule 7 — ~ again nondeterministically. Apply to a, by inserting
v at the position of J. Now let the present tape content be ay. If ay = w,
then accept w, otherwise continue the procedure. O

If L 1s accepted by a TM M, then there erists an unrestricted grammar generating L.
Proof Let L be accepted by a TM M = (K, X1 gp,0,F). Then G is
constructed as follows. Let G = (N, X, P, S;) where N = ((¥ U {e} x I') U
{S1,53,S3}). P consists of the following rules:

1. 51 — qo5
2. Sy — (a,a)S; for each a € T.
That 1s G produces every time two copies of symbols from X.
3. 5 — 5
4. S3 — (€,€)S;

. S5 — €

[|

6. g(a, X) — (a,Y)p

if 6(q, X) = (p,Y, R) for every a in XU {e}, each ¢ € Q, X, Y € I'. This rule
simulates the action of M on the second component of the symbols (a, 3).

7. (b, Z)q(a, X) — p(b, Z)(a,Y)
if 6(q, X) = (p,Y, L) for each a,b € XU {e}, each ¢ € Q, X, Y, Z € I". This

rule does the same job as rule 6.

8. [a, X]q — qaq, qla, X] — gag and ¢ — € for each a € ¥ U {e}, X € T
and g € F.

This rule brings out w from the pair if the second component of the mput
pair 18 properly accepted by M.

Hence we see from the rules that the constructed grammar “nondeter-
ministically” generates two copies of w in ¥* using rules (1) and (2) and
simulates M through the rules 6, 7. Rule 8 brings out w if 1t 18 accepted by
M. The equivalence that if w € L(G) then w € L(M) and conversely can be
proved by induction on the number of derivation steps and on the number
of moves of the TM. Hence the theorem. O

Linear Bounded Automata

A Linear Bounded Automata (LBA) is a nondeterministic Turing machine
with a bounded finite imput tape. That 1s mmput 1s placed between two special
symbols ¢ and $.

But all the other actions of a TM are allowed except that the read / write
head cannot fall off on left of ¢ and right of $. Also ¢ and § are not altered.
One can say that this i1s a restricted version of TM.

Definition 10.4.1 A LBA is a S-tuple M = (K,X,T.8,q0,¢.%, F) where
K. Y. 1, g0, F and 6 are as in any TM. The language recognized by M is

L(M) ={w/w e X* and qodw$ F apf for some p € F'}.

One can show that the family of languages accepted by a LBA is exactly

CSL.
Theorem 10.4.1 If L is a CSL, then L is accepted by a LBA.

Proof For L, one can construct a LBA with 2-track tape. The simulation is
done as in Theorem 10.3.2 where we place w on the first track and produce
sentential forms on the second track, every time comparing with contents on
the first track. If w = e, the LBA halts without accepting. O

If L is recognized by a LBA, then L is generated by a contert-sensitive grammar.

Proof Let M = (K, X, T, q0,0,¢,%, F) be a LBA such that L(M) = L. Then
one can construct a CSG, G = (N, X, P, S;) as below.

N consists of nonterminals of the form (a, 7) where @ € ¥ and 7 is of the
form = or gr or g¢x or 8 or qr$ where g € K, » € T,

P consists of the following productions:

1. Sy — (a,qoda)Ss
2. 51— (a,q¢a$)
3. Sy — (a,a)5

4. Sy — (a,a$) for all a € %.
The above four rules generate a sequence of pairs whose first compo-
nents form a terminal string ajas . . . a; and the second components form
the LBA initial ID.
The moves of the LBA are simulated by the following rules in the sec-

ond component.

5. Ifd(q, X) = (p, Y, R) we have rules of the form (a.¢X)(b, Z) — (a, Y)(b. pZ)
(a,q¢d X)(b,Z) — (a,¢Y)(b,pZ) where a,be ¥, pge K, XY, Z T,

6. Ifd(q, X) = (p,Y, L) we have rules of the form (b, Z)(a,qX) — (b,pZ)(a.Y)
(b, Z)(a,qX$) — (b,pZ)(a,Y$) where a,b € X, p.ge K, X,Y,Z € I.

7. (a,q3) — a if ¢ 1s final, for all a € .

8. (a,a)b — ab

b(a,a) — ba for any a € ¥ and all possible a.

Clearly all the productions are context-sensitive. The simulation leads to a
stage where the first components emerge as the string generated if the second
components representing LBA ID has a final state.

e will not be generated by the grammar whether or not 1t 1s i T'(M). O

We have already seen that € &€ L, if L 1s context-sensitive by definition.
To include € we must have a new start symbol S’ and include S" — €, making
sure S’ does not appear on the right-hand side of any production by adding
S" — a where S — ais a rule in the original CSG with S as the start symbol.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

