
.6cm
.

Introduction to Formal Languages,
Automata and Computability

Pushdown Automata

K. Krithivasan and R. Rama

Introduction to Formal Languages, Automata and Computability – p.1/42



Introduction

We have considered the simplest type of automaton,
viz., the finite state automaton. We have seen that a
finite state automaton has finite amount memory and
hence cannot accept type 2 languages like {anbn|n ≥

1}. In this chapter we consider a class of automata,
the pushdown automata, which accept exactly the class
of context-free (type 2) languages. The pushdown au-
tomaton is a finite automaton with an additional tape,
which behaves like a stack. We consider two ways of
acceptance and show the equivalence between them.

Introduction to Formal Languages, Automata and Computability – p.2/42



The Pushdown Automaton

The equivalence between CFG and pushdown au-
tomata is also proved. Let us consider the follow-
ing language over the alphabet Σ = {a, b, c} : L =

{anbmcn|n,m ≥ 1}. To accept this we have an au-
tomaton which has a finite control and the input tape
which contains the input. Apart from these, there is
an additional pushdown tape which is like a stack of
plates placed on a spring. Only the top most plate is
visible. Plates can be removed from top and added at
the top only. In the following example, we have a red
plate Introduction to Formal Languages, Automata and Computability – p.3/42



contd.

and a number of blue plates. The machine is initially is
state q0 and initially a red plate is on the stack. When
it reads a it adds a blue plate to the stack and remains
in state q0. When it sees the b, it changes to q1. In q1 it
reads b’s without manipulating the stack. When it reads
a c it goes to state q2 and removes a blue plate. In state
q2 it proceeds to read c’s and whenever it reads a c it re-
moves a blue plate. Finally in state q2 without reading
any input it removes the red plate. The working of the
automaton can be summarized by the following table.

Introduction to Formal Languages, Automata and Computability – p.4/42



contd.

State Top Input
plate a b c

q0 red add blue plate - -
remain in state q0

blue add blue plate go to q1 -
remain in state q0

q1 red - - -
blue - remain in state q1 go to q2

remove the plate

q2 red without waiting for input remove red plate
blue - - remain in q2

remove the plate

Let us see how the automaton treats the input aabbbcc.

Introduction to Formal Languages, Automata and Computability – p.5/42



contd.

Initially it is q0 and reads a a. Top plate is red
a a b b b c c

↑

q0 R

When it reads the first a in q0 it adds a blue plate
to the stack. Now the situation looks as follows:

a a b b b c c

↑ B

q0 R

When its reads the second a the automaton’s
instantaneous description (ID) can be represented
by

Introduction to Formal Languages, Automata and Computability – p.6/42



contd.

a a b b b c c

↑ B

q0 B

R
In q0 when it reads a b it goes to q1

a a b b b c c

↑ B

q1 B

R

In q1 it reads a b without manipulating the stack

Introduction to Formal Languages, Automata and Computability – p.7/42



contd.

a a b b b c c

↑ B

q1 B

R
In state q1 when it reads a c it removes a blue
plate and goes to q2

a a b b b c c

↑ B

q1 B

R

In state q2 when it reads a c it removes a blue
plate

Introduction to Formal Languages, Automata and Computability – p.8/42



contd.

a a b b b c c

↑ B

q2 R

a a b b b c c

↑

q2 R
Now the whole input has been read. The
automaton is in q2 and top plate is red. Now
without looking for the next input it removes the
red plate.
The current situation is represented as

Introduction to Formal Languages, Automata and Computability – p.9/42



contd.

a a b b b c c

↑

q2

The whole input has been read and the stack has been
emptied.
The string is accepted by the automaton if the whole
input has been read and the stack has been emptied.
This automaton can accept in a similar manner any
string of the form anbmcn, n,m ≥ 1

Now let us consider the formal definition of a push-
down automaton.

Introduction to Formal Languages, Automata and Computability – p.10/42



contd.

Definition A pushdown automaton (PDA)
M = (K, Σ, Γ, δ, q0, Z0, F ) is a 7-tuple where
K is a finite set of states
Σ is a finite set of input symbols
Γ is a finite set of pushdown symbols
q0 in K is the initial state
Z0 in Γ is the initial pushdown symbol
F ⊆ K is the set of final states
δ is the mapping from K × (Σ ∪ {ε}) × Γ into finite
subsets of K × Γ∗

δ(q, a, z) contains (p, γ) where p, q ∈ K, a ∈ Σ∪ {ε},
z ∈ Γ, γ ∈ Γ∗ means that when the automaton is in
state q and reading a (reading nothing if a = ε) and the

Introduction to Formal Languages, Automata and Computability – p.11/42



contd.

top pushdown symbol in z, it can go to state p and
replace z in the pushdown store by the string γ. If
γ = z1 . . . zn; z1 becomes the new top symbol of the
pushdown store. It should be noted that basically the
pushdown automaton is nondeterministic in nature.
An instantaneous description of a PDA is a 3-tuple
(q, w, α) where q denotes the current state, w is the
portion of the input yet to be read and α denotes the
contents of the pushdown store. w ∈ Σ∗, α ∈ Γ∗ and
q ∈ K. By convention the leftmost symbol of α is the
top symbol of the stack.

Introduction to Formal Languages, Automata and Computability – p.12/42



contd.

If (q, aa1a2 . . . an, zz1 . . . zn) is an ID and δ(q, a, z) contains
(p,B1 . . . Bm), then the next ID is (p, a1 . . . an, B1 . . . Bmz1 . . . zn),
a ∈ Σ ∪ {ε}.
This is denoted by
(q, aa1 . . . an, zz1 . . . zn) ` (p, a1 . . . an, B1 . . . Bmz1 . . . zn). `∗ is the
reflexive transitive closure of `. The set of strings accepted by the PDA
M by emptying the pushdown store is denoted as Null(M) or N(M).

N(M) = {w/w ∈ Σ∗, (q0, w, Z0) `
∗ (q, ε, ε) for some q ∈ K}

This means that any string w on the input tape will be accepted by the

PDA M by the empty store, if M started

Introduction to Formal Languages, Automata and Computability – p.13/42



contd.

in q0 with its input head pointing to the leftmost
symbol of w and Z0 on its pushdown store, will read
the whole of w and go to some state q and the
pushdown store will be emptied. This is called
acceptance by empty store. When acceptance by
empty store is considered F is taken as the empty set.
There is another way of acceptance called acceptance
by final state. Here when M is started in q0 with w

on the input tape and input tape head pointing to the
leftmost symbol of w and with Z0 on the pushdown
store, after some moves finally reads the whole input
and reaches one of the final states. The pushdown store

Introduction to Formal Languages, Automata and Computability – p.14/42



contd.

need not be emptied in this case. The language
accepted by the pushdown automaton by final state is
denoted as T (M).

T (M) = {w/w ∈ Σ∗, (q0, w, Z0) `∗ (qf , ε, γ) for some qf ∈ F and γ ∈ Γ∗}.

Example Let us formally define the pushdown
automaton for accepting {anbmcn/n,m ≥ 1}
described informally earlier.
M = (K, Σ, Γ, δ, q0, R, φ) where K = {q0, q1, q2},
Σ = {a, b, c}, Γ = {B,R} and δ is given by
δ(q0, a, R) = {(q0, BR)}
δ(q0, a, B) = {(q0, BB)}
δ(q0, b, B) = {(q1, B)}
δ(q1, b, B) = {(q1, B)} Introduction to Formal Languages, Automata and Computability – p.15/42



contd.

δ(q1, c, B) = {(q2, ε)}
δ(q2, c, B) = {(q2, ε)}
δ(q2, ε, R) = {(q2, ε)}
The sequence of ID’s on input aabbbcc is given by,

(q0, aabbbcc, R) ` (q0, abbbcc, BR) ` (q0, bbbcc, BBR)

` (q1, bbcc, BBR) ` (q1, bcc, BBR) ` (q1, cc, BBR)

` (q2, c, BR) ` (q2, ε, R) ` (q2, ε, ε)

It can be seen that the above PDA is deterministic. The
general definition of PDA is nondeterministic. In order
that a PDA is deterministic two conditions have to be
satisfied.

Introduction to Formal Languages, Automata and Computability – p.16/42



contd.

At any instance, the automaton should not have a
choice between reading a true input symbol or ε; the
next move should be uniquely determined. These
conditions may be stated formally as follows: In a
deterministic PDA (DPDA),

1. For all q in K, Z in Γ if δ(q, ε, Z) is nonempty
δ(q, a, Z) is empty for all a ∈ Σ.

2. For all q in K, a in Σ ∪ {ε}, Z in Γ, δ(q, a, Z)
contains at most one element.

Introduction to Formal Languages, Automata and Computability – p.17/42



Equivalence between Acceptance by
Empty Store and Acceptance by Fi-
nal State

Theorem L is accepted by a PDA M1 by empty store
if and only if L is accepted by a PDA M2 by final
state.
Proof (i) Let L be accepted by a PDA
M2 = (K, Σ, Γ, δ2, q0, Z0, F ) by final state. Then
construct M1 as follows:
M1 = (K ∪ {q′0, qe}, Σ, Γ ∪ {X0}, δ1, q

′
0, X0, φ). We

add two more states q′0 and qe and one more pushdown
symbol X0. q′0 is the new initial state and X0 is the
new initial pushdown symbol. qe is the erasing state.
δ mappings are defined as follows:

Introduction to Formal Languages, Automata and Computability – p.18/42



contd.

1. δ1(q
′
0, ε,X0) contains (q0, Z0X0)

2. δ1(q, a, Z) includes δ2(q, a, Z) for all q ∈ K,
a ∈ Σ ∪ {ε}, Z ∈ Γ

3. δ1(qf , ε, Z) contains (qe, ε) for qf ∈ F and
Z ∈ Γ ∪ {X0}

4. δ1(qe, ε, Z) contains (qe, ε) for Z ∈ Γ ∪ {X0}

The first move makes M1 go to the initial ID of M2

(except for the X0 in the pushdown store). Using the
second set of mappings M1 simulates M2. When M2

reaches a final state using mapping 3, M1 goes to the
Introduction to Formal Languages, Automata and Computability – p.19/42



contd.

erasing state qe and using the set of mappings 4, entire
pushdown store is erased.
If w is the input accepted by M2, we have
(q0, w, z0)

∗
`

M2

(qf , ε, γ).
This can happen in M1 also. (q0, w, Z0)

∗
`

M1

(qf , ε, γ).
M1 accepts w as follows:

(q′0, w,X0) ` (q0, w, Z0X0) `
∗ (qf , ε, γX0) `

∗ (qe, ε, ε)
(1)

Hence if w is accepted by M2, it will be accepted by
M1. On the other hand if M1 is presented with an input,
the first move it can make is using mapping 1 and once

Introduction to Formal Languages, Automata and Computability – p.20/42



contd.

it goes to state qe, it can only erase the pushdown store
and has to remain in qe only. Hence mapping 1 should
be used in the beginning and mapping 3 and 4 in the
end. Therefore mapping 2 will be used in between and
the sequence of moves will be as in the equation 1.
Hence (q0, w, Z0X0)

∗
`

M2

(qf , ε, γX0) which means
(q0, w, Z0)

∗
`

M2

(qf , ε, γ) and w will be accepted by M2.
(ii) Next we prove that if L is accepted by M1 by
empty store, it will be accepted by M2 by final state.
Let M1 = (K, Σ, Γ, δ1, q0, Z0, φ). Then M2 is
constructed as follows:

M2 = (K ∪ {q′0, qf}, Σ, Γ ∪ {X0}, δ2, q
′
0, X0, {qf})

Introduction to Formal Languages, Automata and Computability – p.21/42



contd.

Two more states q′0 and qf are added to the set of states
K. q′0 becomes the new initial state and qf becomes
the only final state. One more pushdown symbol X0 is
added which becomes the new initial pushdown
symbol. The δ mappings are defined as follows:

1. δ2(q
′
0, ε,X0) contains (q0, Z0X0)

2. δ2(q, a, Z) includes all elements of δ1(q, a, Z) for
q ∈ K, a ∈ Σ ∪ {ε}, Z ∈ Γ

3. δ2(q, ε,X0) contains (qf , X0) for each q ∈ K

Mapping 1 makes M2 go to the initial ID of M1 (except
for the X0 in the pushdown store). Then using mapping

Introduction to Formal Languages, Automata and Computability – p.22/42



contd.

2, M2 simulates M1. When M1 accepts by emptying
the pushdown store, M2 has X0 left on the pushdown
store. Using mapping 3, M2 goes to the final state qf .
The moves of M2 in accepting an input w can be
described as follows:

(q′0, w,X0) ` (q0, w, Z0X0) `
∗ (q, ε,X0) ` (qf , ε,X0)

It is not difficult to see that w is accepted by M2 if and
only if w is accepted by M1.
It should be noted that X0 is added in the first part for
the following reason. M2 may reject an input w by
emptying the store and reaching a nonfinal state. If X0

Introduction to Formal Languages, Automata and Computability – p.23/42



contd.

were not there M1 while simulating M2 will empty
the store and accept the input w. In the second part X0

is added because for M2 to make the last move and
reach a final state, a symbol in the pushdown store is
required. Thus we have proved the equivalence of
acceptance by empty store and acceptance by final
state in the case of nondeterministic pushdown
automata.
Remark The above theorem is not true in the case of
deterministic pushdown automata.

Introduction to Formal Languages, Automata and Computability – p.24/42



Equivalence of CFG and PDA

Theorem If L is generated by a CFG, then L is
accepted by a nondeterministic pushdown automaton
by empty store.
Proof Let us assume that L does not contain ε and
L = L(G), where G is in Greibach Normal Form.
G = (N, T, P, S) where rules in P are of the form
A → aα, A ∈ N , a ∈ T , α ∈ N ∗. Then M

can be constructed such that N(M) = L(G). M =

({q}, T,N, δ, q, S, φ) where δ is defined as follows: If
A → aα is a rule, δ(q, a, A) contains (q, ε). M sim-
ulates a leftmost derivation in G and the equivalence

Introduction to Formal Languages, Automata and Computability – p.25/42



contd.

L(G) = N(M) can be proved using induction. If
ε ∈ L, then we can have a grammar G in GNF with an
additional rule S → ε and S will not appear on the
right-hand side of any production. In this case, M can
have one ε-move defined by δ(q, ε, S) contains (q, ε)
which will enable it to accept ε.
Theorem If L is accepted by a PDA, then L can be
generated by a CFG.
Proof Let L be accepted by a PDA by empty store.
Construct a CFG G = (N, T, P, S) as follows:
N = {[q, Z, p]|q, p ∈ K,Z ∈ Γ} ∪ {S}.
P is defined as follows:

Introduction to Formal Languages, Automata and Computability – p.26/42



contd.

S → [q0, Z0, q] ∈ P for each q in K.
If δ(q, a,A) contains (p,B1 . . . Bm) (a ∈ Σ ∪ {ε}) is a mapping, then
P includes rules of the form
[q,A, qm] → a[p,B1, q1][q1, B2, q2] . . . [qm−1, Bm, qm],
qi ∈ K, 1 ≤ i ≤ m

If δ(q, a,A) contains (p, ε) then P includes [q,A, p] → a

Now we show that L(G) = N(M)(= L).
It should be noted that the variables and productions in the grammar
are defined in such a way that the moves of the PDA are simulated by a
leftmost derivation in G.
We prove that

[q,A, p]
∗
⇒ x if and only if (q, x,A)

∗
` (p, ε, ε).

Introduction to Formal Languages, Automata and Computability – p.27/42



contd.

That is, if the PDA goes from state q to state p after
reading x and the stack initially with A on the top
ends with A removed from stack (in between the stack
can grow and come down). See Figure 1
This is proved by induction on the number of moves
of M .
(i) If (q, x, A) `∗ (p, ε, ε) then [q, A, p]

∗
⇒ x

Basis
If (q, x, A) ` (p, ε, ε) x = a or ε, where a ∈ Σ and
there should be a mapping δ(q, x, A) contains (p, ε).
In this case by our construction [q, A, p] −→ x is in P .
Hence [q, A, p] ⇒ x.

Introduction to Formal Languages, Automata and Computability – p.28/42



contd.

B

B

B

1

2

3

x x
1 2 xm

Figure 1:

Introduction to Formal Languages, Automata and Computability – p.29/42



contd.

Induction
Suppose the result holds up to n − 1 steps.
Let (q, x, A) `∗ (p, ε, ε) in n steps.
Now we can write x = ax′ a ∈ Σ ∪ {ε} and the first
move is (q, ax′, A) ` (q1, x

′, B1 . . . Bm)
This should have come from a mapping δ(q, a, A)
contains (q1, B1 . . . Bm) and there is a rule

[q,A, qm+1] → a[q1, B1, q2][q2, B2, q3] . . . [qm, Bm, qm+1] in P. (2)

The stack contains A initially and is replaced by
B1 . . . Bm. Now the string x′ can be written as
x1x2 . . . xm such that, the PDA completes reading x1

Introduction to Formal Languages, Automata and Computability – p.30/42



contd.

when B2 becomes top of the stack; completes reading
x2 when B3 becomes the top of the stack and so on.
The situation is is described in the Figure 1.
Therefore (qi, xi, Bi) `

∗ (qi+1, ε, ε) and this happen in
less than n steps. So

(qi, Bi, qi+1)
∗
⇒ xi by induction hypothesis. (3)

Putting qm+1 = p in (2) we get
[q, A, p] ⇒ a[q1, B1, q2] . . . [qn, Bn, p]

∗
⇒ ax1 . . . xn =

ax′ = x by equation 3)
Therefore [q, A, p]

∗
⇒ x in G.

Introduction to Formal Languages, Automata and Computability – p.31/42



contd.

(ii) If [q, A, p]
∗
⇒ x in G then (q, x, A) `∗ (p, ε, ε)

Proof is by induction on the number of steps in the
derivation in G.
Basis
If [q, A, p] ⇒ x then x = a or ε where a ∈ Σ and
(q, A, p) → x is a rule in P . This must have come
from the mapping δ(q, x, A) contains (p, ε) and hence
(q, x, A) ` (p, ε, ε).
Induction

Suppose the hypothesis holds up to (n − 1) steps and
suppose [q, A, p]

∗
⇒ x in n steps. The first rule applied

in the derivation must be of the form
Introduction to Formal Languages, Automata and Computability – p.32/42



contd.

[q, A, p] → a[q1, B1, q2][q2, B2, q3] . . . [qm, Bm, p] (4)

and x can be written in the form x = ax1 . . . xm

such that [qi, Bi, qi+1]
∗
⇒ xi.

This derivation must have taken less than n steps and
so by the induction hypothesis

(qi, xi, Bi) `
∗ (qi+1, ε, ε) 1 ≤ i ≤ m and qm+1 = p.

(5)
4 must have come from a mapping δ(q, a, A) contains
(q, B1 . . . Bm)

Therefore
Introduction to Formal Languages, Automata and Computability – p.33/42



contd.

(q, ax1 . . . xm, A) ` (q1, x1 . . . xm, B1 . . . Bm)

`∗ (q2, x2 . . . xm, B2 . . . Bm)

`∗ (q3, x3 . . . xm, B3 . . . Bm)
...

`∗ (qm−1, xm−1xm, Bm−1Bm)

`∗ (qm, xm, Bm)

`∗ (p, ε, ε)

Introduction to Formal Languages, Automata and Computability – p.34/42



contd.

Hence (q, x, A) `∗ (p, ε, ε). Having proved that
(q, x, A) `∗ (p, ε, ε) if and only if [q, A, p]

∗
⇒ x, we

can easily see that S ⇒ [q0, Z0, q]
∗
⇒ w if and only if

(q0, w, Z0) `
∗ (p, ε, ε)

This means w is generated by G if and only if w is
accepted by M by empty store.
Hence L(G) = N(M).
Let us illustrate the construction with an example.

Introduction to Formal Languages, Automata and Computability – p.35/42



Example

Construct a CFG to generate N(M) where

M = ({p, q}, {0, 1}, {X,Z0}, δ, q, Z0, φ)

where δ is defined as follows:
1. δ(q, 1, Z0) = {(q,XZ0)}

2. δ(q, 1, X) = {(q,XX)}

3. δ(q, 0, X) = {(p,X)}

4. δ(q, ε, Z0) = {(q, ε)}

5. δ(p, 1, X) = {(p, ε)}

6. δ(p, 0, Z0) = {(q, Z0)}

Introduction to Formal Languages, Automata and Computability – p.36/42



contd.

It can be seen that

N(M) = {1n01n0}∗, n ≥ 1.

The machine while reading 1n adds X’s to the stack and when it reads
a 0, change to state p. In state p it reads 1n again removing the X’s
from the stack. When it reads a 0, it goes to q keeping Z0 on the stack.
It can remove Z0 by using mapping 4 or repeat the above process
several times. Initially also Z0 can be removed using mapping 4,
without reading any input. Hence ε will also be accepted.
G = (N,T, P, S) is constructed as follows:
T = Σ

N = {[q, Z0, q], [q,X, q], [q, Z0, p], [q,X, p], [p, Z0, q],

[p,X, q], [p, Z0, p], [p,X, p]} ∪ {S}
Introduction to Formal Languages, Automata and Computability – p.37/42



contd.

Initial rules are
r1. S → [q, Z0, q]

r2. S → [q, Z0, p]

Next we write the rules for the mappings.
Corresponding to mapping 1, we have the rules
r3. [q, Z0, q] → 1[q,X, q][q, Z0, q]

r4. [q, Z0, q] → 1[q,X, p][p, Z0, q]

r5. [q, Z0, p] → 1[q,X, q][q, Z0, p]

r6. [q, Z0, p] → 1[q,X, p][p, Z0, p]

Corresponding to mapping 2, we have the rules
r7. [q,X, q] → 1[q,X, q][q,X, q]

r8. [q,X, q] → 1[q,X, p][p,X, q]

r9. [q,X, p] → 1[q,X, q][q,X, p]

r10. [q,X, p] → 1[q,X, p][p,X, p] Introduction to Formal Languages, Automata and Computability – p.38/42



contd.

Corresponding to mapping 3, we have the rules
r11. [q,X, q] → 0[p,X, q]

r12. [q,X, p] → 0[p,X, p]

Corresponding to mapping 4 we have the ruler
r13. [q, Z0, q] → ε

Corresponding to mapping 5 we have the rule
r14. [p,X, p] → 1

Corresponding to mapping 6 we have the rules
r15. [p, Z0, q] → 0[q, Z0, q]

r16. [p, Z0, p] → 0[q, Z0, p]

So we have ended up with 16 rules. Let us see whether we can remove
some useless nonterminals and rules here.
There is no rule with [p,X, q] on the left hand side. So

Introduction to Formal Languages, Automata and Computability – p.39/42



contd.

rules involving it can be removed i.e., r8, r11. Once r8

and r11 are removed, the only rule with [q,X, q] on the
left hand side is r7 which will create more [q,X, q]
whenever applied and the derivation will not
terminate. So rules involving [q,X, q] can be
removed. i.e., r3, r5, r7, r9. Now we are left with rules
r1, r2, r4, r6, r10, r12, r13, r14, r15, r16. If you start with
r2, r6 can be applied. [q, Z0, p] will introduce [p, Z0, p]
in the sentential form. Then r16 can be applied which
will introduce [q, Z0, p] and the derivation will not
terminate. Hence [q, Z0, p] and rules involving it can
be removed. i.e., rules r2, r6, r16 can be removed. So
we end up with rules r1, r4, r10, r12, r13, r14, r15. Using
nonterminals Introduction to Formal Languages, Automata and Computability – p.40/42



contd.

A for [q, Z0, q]

B for [q,X, p]

C for [p, Z0, q]

D for [p,X, p]

Introduction to Formal Languages, Automata and Computability – p.41/42



contd.

the rules can be written as

S → A

A → 1BC

B → 1BD

B → 0D

A → ε

D → 1

C → 0A

It can be easily checked that this grammar generates
{1n01n0}∗.

Introduction to Formal Languages, Automata and Computability – p.42/42


	Introduction
	The Pushdown Automaton
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Equivalence between Acceptance by Empty Store and Acceptance by Final State
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Equivalence of CFG and PDA
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Example
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.

