
.6
c
m

.

Introduction to Formal Languages,
Automata and Computability

Finite State Automata : Output and Minimization

K. Krithivasan and R. Rama

Introduction to Formal Languages, Automata and Computability – p.1/23

Myhill-Nerode Theorem

In an earlier chapter we considered some examples of
FSA. Consider the example serial adder. After getting
some input, the machine can be in ‘carry’ state or ‘no
carry’ state. It does not matter what exactly the earlier
input was. It is only necessary to know whether it has
produced a carry or not. Hence the finite state automa-
ton need not distinguish between each and every input.
It distinguishes between classes of inputs.

Introduction to Formal Languages, Automata and Computability – p.2/23

contd.

In the above case, the whole set of inputs can be parti-
tioned into two classes - one that produces a carry and
another that does not produce a carry. Thus the finite
state automaton distinguishes between classes of input
strings. These classes are also finite . Hence we say
that the FSA has finite amount of memory.

Introduction to Formal Languages, Automata and Computability – p.3/23

Myhill-Nerode

Theorem The following three statements are
equivalent.

1. L ⊆ Σ∗ is accepted by a DFSA.
2. L is the union of some of the equivalence classes

of a right invariant equivalence relation of finite
index on Σ∗.

3. Let equivalence relation RL be defined over Σ∗ as
follows: xRLy if and only if, ∀z ∈ Σ∗, xz is in L
exactly when yz is in L. Then RL is of finite
index.

Introduction to Formal Languages, Automata and Computability – p.4/23

Proof

We shall prove (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (1).
(1) ⇒ (2).
Let L be accepted by a FSA M = (K, Σ, δ, q0, F).
Define a relation RM on Σ∗ such that xRMy if
δ(q0, x) = δ(q0, y). RM is an equivalence relation, as
seen below.
∀ x xRMx, since δ(q0, x) = δ(q0, x),
∀ x xRMy ⇒ yRMx ∵ δ(q0, x) = δ(q0, y) means
δ(q0, y) = δ(q0, x),
∀ x, y xRMy and yRMz ⇒ xRMz. For if
δ(q0, x) = δ(q0, y) and δ(q0, y) = δ(q0, z) then
δ(q0, x) = δ(q0, z).

Introduction to Formal Languages, Automata and Computability – p.5/23

contd.

So RM divides Σ∗ into equivalence classes. The set of
strings which take the machine from q0 to a particular
state qi are in one equivalence class. The number of
equivalence classes is therefore equivalent to the
number of states of M , assuming every state is
reachable from q0. (If a state is not reachable from q0,
it can be removed without affecting the language
accepted). It can be easily seen that this equivalence
relation RM is right invariant, i.e., if
xRMy, xzRMyz ∀z ∈ Σ∗.
δ(q0, x) = δ(q0, y) if xRMy,
δ(q0, xz) = δ(δ(q0, x), z) = δ(δ(q0, y), z) = δ(q0, yz).
Therefore xzRMyz.

Introduction to Formal Languages, Automata and Computability – p.6/23

contd.

L is the union of those equivalence classes of RM which correspond to
final states of M .
(2) ⇒ (3)
Assume statement (2) of the theorem and let E be the equivalence
relation considered. Let RL be defined as in the statement of the
theorem. We see that xEy ⇒ xRLy.
If xEy, then xzEyz for each z ∈ Σ∗. xz and yz are in the same
equivalence class of E. Hence xz and yz are both in L or both not in L

as L is the union of some of the equivalence classes of E. Hence xRLy.

Hence any equivalence class of E is completely contained in an equiv-

alence class of RL. Therefore E is a refinement of RL and so the index

of RL is less than or equal to the index of E and hence finite.
Introduction to Formal Languages, Automata and Computability – p.7/23

contd.

(3) ⇒ (1)
First we show RL is right invariant. xRLy if ∀z in Σ∗,
xz is in L exactly when yz is in L or we can also
write this in the following way: xRLy if for all w, z in
Σ∗, xwz is in L exactly when ywz is in L.
If this holds xwRLyw.
Therefore RL is right invariant. Let [x] denote the
equivalence class of RL to which x belongs.
Construct a DFSA ML = (K ′, Σ, δ′, q0, F

′) as
follows: K ′ contains one state corresponding to each
equivalence class of RL. [ε] corresponds to q′0. δ′ is
defined as follows: δ′([x], a) = [xa]. This definition is
consistent as RL

Introduction to Formal Languages, Automata and Computability – p.8/23

contd.

is right invariant. Suppose x and y belong to the same
equivalence class of RL. Then xa and ya will belong
to the same equivalence class of RL. For,

δ′([x], a) = δ′([y], a)

⇓ ⇓

[xa] = [ya]

if x ∈ L, [x] is a final state in M ′, i.e., [x] ∈ F ′. This
automaton M ′ accepts L.

Introduction to Formal Languages, Automata and Computability – p.9/23

Example

Consider the FSA M given in next figure.

q qq

b b

0 1 2a

b

a

a

The language accepted consists of strings of a’s and
b’s having at least one a. M divides {a, b}∗ into 3
equivalence classes.
1. H1, set of strings which take M from q0 to q0 i.e.,
b∗.
2. H2, set of strings which take M from q0 to q1, i.e.,
set of strings which have odd numbers of a’s.

Introduction to Formal Languages, Automata and Computability – p.10/23

contd.

3. H3, set of strings which take M from q0 to q2, i.e.,
set of strings which have even number of a’s.
L = H2 ∪ H3 as can be seen.

1. Let x ∈ H1 and y ∈ H2. Then xb ∈ H1 and
yb ∈ H2. Then xb /∈ L and yb ∈ L. Therefore
x
/

RLy.
2. Let x ∈ H1 and y ∈ H3. Then xb ∈ H1 and so

xb /∈ L and yb ∈ H3 and so xb ∈ L. Therefore
x
/

RLy.
3. Let x ∈ H2 and y ∈ H3. Take any string z, xz

belongs to either H2 or H3 and so in L, yz
belongs to either H2 or H3 and so in L. Therefore
xRLy. Introduction to Formal Languages, Automata and Computability – p.11/23

contd.

So if we construct M ′ as in the proof of the theorem,
we have one state corresponding to H1 and one state
corresponding to L = H2 ∪ H3.

H U H2 3

b

1H a

a,b

This is the automaton we get as M ′. We see that, it
accepts L(M). Both M and M ′ are DFSA accepting
the same language. But M ′ has minimum number of
states and is called the minimum state automaton.

Introduction to Formal Languages, Automata and Computability – p.12/23

Theorem The minimum state automaton accepting a
regular set L is unique up to an isomorphism and is
given by M ′ in the proof of previous theorem.
In the proof of previous theorem, we started with M ,
found equivalence classes for RM , RL and constructed
M ′. The number of states of M is equal to the index
of RM and the number of states of M ′ is equal to the
index of RL. Since RM is a refinement of RL, the num-
ber of states of M ′ is less than or equal to the number
of states of M . If M and M ′ have the same number of
states, then we can find a mapping h : K → K ′

Introduction to Formal Languages, Automata and Computability – p.13/23

contd.

(which identifies each state of K with a state of K ′)
such that if h(q) = q′ then for a ∈ Σ,

h(δ(q, a)) = δ′(q′, a).

This is achieved by defining h as follows: h(q0) = q′0
and if q ∈ K, then there exists a string x such that
δ(q0, x) = q. h(q) = q′ where δ(q′0, x) = q′. This def-
inition of h is consistent. This can be seen as follows:
Let δ(q, a) = p and δ′(q′, a) = p′, δ(q0, xa) = p and
δ′(q′0, xa) = p′ and hence h(p) = p′.

Introduction to Formal Languages, Automata and Computability – p.14/23

Minimization of DFSA

Let M = (K, Σ, δ, q0, F) be a DFSA. Let R be an
equivalence relation on K such that pRq, if and only
if for each input string x, δ(p, x) ∈ F if and only if
δ(q, x) ∈ F . This essentially means that if p and q are
equivalent, then either δ(p, x) and δ(q, x) both are in
F or both are not in F for any string x. p is
distinguishable from q if there exists a string x such
that one of δ(q, x), δ(p, x) is in F and the other is not.
x is called the distinguishing string for the pair
< p, q >.
If p and q are equivalent δ(p, a) and δ(q, a) will be
equivalent for any a. If δ(p, a) = r and δ(q, a) = s
and r and s are distinguishable by x, then p and q are
distinguishable by ax. Introduction to Formal Languages, Automata and Computability – p.15/23

Algorithm to find minimum DFSA

We get a partition of the set of states of K as follows:
Step 1 Consider the set of states in K. Divide them
into two blocks F and K − F . (Any state in F is
distinguishable from a state in K − F by ε)
Repeat the following step till no more split is possible.
Step 2 Consider the set of states in a block. Consider
the a-successors of them for a ∈ Σ. If they belong to
different blocks, split this block into two or more
blocks depending on the a-successors of the states.
For example if a block has {q1, . . . , qk}. δ(q1, a) = p1,
δ(q2, a) = p2, . . . , δ(qk, a) = pk and p1, . . . , pi belong
to one block, pi+1, . . . , pj belong to another block and

Introduction to Formal Languages, Automata and Computability – p.16/23

contd.

pj+1, . . . , pk belong to third block, then split
{q1, . . . , qk} into {q1, . . . , qi} {qi+1, . . . , qj}
{qj+1, . . . , qk}.
Step 3 For each block Bi, consider a state bi.
Construct M ′ = (K ′, Σ, δ′, q′0, F

′) where K ′ = {bi|Bi

is a block of the partition obtained in step 2}.
q′0 corresponds to the block containing q0.
δ(bi, a) = bj if there exits qi ∈ Bi and qj ∈ Bj such
that δ(qi, a) = qj. F ′ consists of states corresponding
to the blocks containing states in F .

Introduction to Formal Languages, Automata and Computability – p.17/23

Example

Consider the following FSA M over Σ = {b, c}
accepting strings which have bcc as a substrings. A
nondeterministic automaton for this will be,

q qq

b,c

0 1 2
q

3c

b,c

b c

Converting to DFSA we get M ′ as in next figure.

p

c

0 b c

b

c
p

3

c

p
4

b

p
5

p
2p

1

c

b
c

b

b
Introduction to Formal Languages, Automata and Computability – p.18/23

contd.

where, p0 = [q0] p1 = [q0, q1] p2 = [q0, q2]
p3 = [q0, q3] p4 = [q0, q1, q3]
p5 = [q0, q2, q3]. Finding the minimum state
automaton for M ′

Step 1 Divide the set of states into 2 blocks

p0p1p2 p3p4p5.

In p0p1p2, the b successors are in one block, the c suc-
cessors of p0p1 are in one block and p2 is in another
block. Therefore p0p1p2 is split as p0p1 and p2. The b

and c successors of p3p4p5 are in the same block.
Introduction to Formal Languages, Automata and Computability – p.19/23

contd.

Now the partition is p0p1 p2 p3p4p5. Consider
p0p1. The b successors of p0p1 are in the same block
but the c successors of p0 and p1 are p0 and p2 and
they are in different blocks. Therefore p0p1 is split
into p0 and p1. Now the partition is
p0 p1 p2 p3p4p5. No further split is possible. The
minimum state automaton is

p p p
3 4 5p pp

c

0 1 2cb c

b

b

b,c

Introduction to Formal Languages, Automata and Computability – p.20/23

contd.

The minimization procedure cannot be applied to
NFSA. For example consider the NFSA

qq

0,1

0 10

q
2

01

The language accepted is represented by the regular
expression (0 + 1)∗0 for which NFSA in next figure
will

Introduction to Formal Languages, Automata and Computability – p.21/23

contd.

suffice. But if we try to use the minimization
procedure q0q1q2 will be initially split as q0q2 and q1.
q0 and q2 are not equivalent as δ(q0, 0) contains a final
state while δ(q2, 0) does not. So they have to be split
and the FSA in first figure cannot be minimized using
the minimization procedure.

0,1

q q
0 10

Myhill-Nerode theorem can also be used to show that
certain sets are not regular.

Introduction to Formal Languages, Automata and Computability – p.22/23

Example

We know L = {anbn|n ≥ 1} is not regular. Suppose
L is regular. Then by Myhill-Nerode theorem, L is the
union of the some of the equivalence classes of a right
invariant relation ≈ over {a, b}. Consider a, a2, a3, . . .
since the number of equivalence classes is finite, for
some m and n, m 6= n, am and an must be in the same
equivalence class. We write this as am ≈ an. Since ≈
is right invariant ambm ≈ anbm. i.e., ambm and anbm

are in the same equivalence class. L either contains
one equivalence class completely or does not contain
that class. Hence since ambm ∈ L, L should contain
this class completely and hence anbm ∈ L which is a
contradiction. Therefore L is not regular.

Introduction to Formal Languages, Automata and Computability – p.23/23

	Myhill-Nerode Theorem
	contd.
	Myhill-Nerode
	Proof
	contd.
	contd.
	contd.
	contd.
	Example
	contd.
	contd.
	
	contd.
	Minimization of DFSA
	Algorithm to find minimum DFSA
	contd.
	Example
	contd.
	contd.
	contd.
	contd.
	Example

