
.6cm
.

Introduction to Formal Languages,
Automata and Computability

Finite State Automata

K. Krithivasan and R. Rama

Introduction to Formal Languages, Automata and Computability – p.1/51

Introduction

As another example consider a binary serial adder. At
any time it gets two binary inputs x1 and x2. The
adder can be in any one of the states ‘carry’ or ‘no
carry’ . The four possibilities for the inputs x1x2 are
00, 01, 10, 11. Initially the adder is in the ‘no carry’
state. The working of the serial adder can be
represented by the following diagram.

no carrycarry

00/1

11/0

10/1

01/1

00/0 01/0

11/1

10/0

Introduction to Formal Languages, Automata and Computability – p.2/51

contd.

p q
x x /x1 2 3

denotes that when the adder is in
state p and gets input x1x2, it goes to state q and
outputs x3. The input and output on a transition from
p to q is denoted by i/o. It can be seen that suppose the
two binary numbers to be added are 100101 and
100111.

Time 6 5 4 3 2 1

1 0 0 1 0 1

1 0 0 1 1 1

The input at time t = 1 is 11 and the output is 0 and
the

Introduction to Formal Languages, Automata and Computability – p.3/51

contd

machine goes to ‘carry’ state. The output is 0. Here at time t = 2, the
input is 01; the output is 0 and the machine remains in ‘carry’ state. At
time t = 3, it gets 11 and output 1 and remains in
‘carry’ state. At time t = 4, the input is 00; the machine outputs 1 and
goes to ‘no carry’ state. At time t = 5, the input is 00; the output is 0
and the machine remains in ‘no carry’ state. At time t = 6, the input is
11; the machine outputs 0 and goes to ‘carry’ state. The input stops
here. At time t = 7, no input is there (and this is taken as 00) and the
output is 1.

It should be noted that at time t = 1, 3, 6 input is 11, but the output is 0

at t = 1, 6 and is 1 at time t = 3. At time t = 4, 5, the input is 00, but

the output is 1 at time t = 4 and 0 at t = 5.
Introduction to Formal Languages, Automata and Computability – p.4/51

contd.

So it is seen that the output depends both on the input
and the state.
The diagrams we have seen are called state diagrams.

q p
i/o

The above diagram indicates that in state q when the
machine gets input i, it goes to state p and outputs 0.
Let us consider one more example of a state diagram
given in

Introduction to Formal Languages, Automata and Computability – p.5/51

contd

q q

0/1

1/0

10 1/1

0/0

The input and output alphabet are {0, 1}. For the
input 011010011, the output is 00110100 and
machine is in state q1. It can be seen that the first is 0
and afterwards, the output is the symbol read at the
previous instant. It can also be noted that the machine
goes to q1 after reading a 1 and goes to q0 after
reading a 0.

Introduction to Formal Languages, Automata and Computability – p.6/51

contd

It should also be noted that when it goes from state q0

it outputs a 0 and when it goes from state q1, it out-
puts a 1. This machine is called a one moment delay
machine.

Introduction to Formal Languages, Automata and Computability – p.7/51

Deterministic Finite State Automa-
ton

Definition A Deterministic Finite State Automaton
(DFSA) is a 5-tuple
M = (K, Σ, δ, q0, F) where

K is a finite set of states
Σ is a finite set of input symbols
q0 in K is the start state or initial state
F ⊆ K is set of final states
δ, the transition function is a mapping from
K × Σ → K.

δ(q, a) = p means, if the automaton is in state q and
reading a symbol a, it goes to state p in the next

Introduction to Formal Languages, Automata and Computability – p.8/51

contd

instant, moving the pointer one cell to the right.
δ̂ is an extension of δ and δ̂ : K ×Σ∗ → K as follows:

δ̂(q, ε) = q for all q in K

δ̂(q, xa) = δ(δ̂(q, x), a) x ∈ Σ∗, q ∈ K, a ∈ Σ.

Since δ̂(q, a) = δ(q, a), without any confusion we can
use δ for δ̂ also. The language accepted by the
automaton is defined as
T (M) = {w/w ∈ T ∗, δ(q0, w) ∈ F}.

Introduction to Formal Languages, Automata and Computability – p.9/51

contd

Example Let a DFSA have state set {q0, q1, q2, D}; q0

is the initial state; q2 is the only final state. The state
diagram of the DFSA is given in the following figure.

q
1 q

2

b

a

a

a

b

b

q
0

D

a,b

Introduction to Formal Languages, Automata and Computability – p.10/51

contd

a a a b

↑

q0

a a a b

↑

q1

a a a b

↑

q1

a a a b

↑

q1

a a a b

↑

q2

Introduction to Formal Languages, Automata and Computability – p.11/51

contd

After reading aaabb, the automaton reaches a final
state. It is easy to see that

T (M) = {anbm/n,m ≥ 1}

There is a reason for naming the fourth state as D.
Once the control goes to D, it cannot accept the string,
as from D the automaton cannot go to a final state.
On further reading any symbol the state remains as D.
Such a state is called a dead state or a sink state.

Introduction to Formal Languages, Automata and Computability – p.12/51

Nondeterministic Finite State Au-
tomaton

Consider the following state diagram of a
nondeterministic FSA.

q
1 q

2
a bq

0

a b

On a string aaabb the transition can be looked at as
follows.

q
0

q
0

q
0

q
0

q
1

q
1 q

1
q

1

q
2

q
2

q
1

a a a b b

Introduction to Formal Languages, Automata and Computability – p.13/51

contd

Definition A Nondeterministic Finite State
Automaton (NFSA) is a 5-tuple M = (K, Σ, δ, qo, F)
where K, Σ, δ, q0, F are as given for DFSA and δ, the
transition function is a mapping from K × Σ into
finite subsets of K.
The mappings are of the form δ(q, a) = {p1, . . . , pr}
which means if the automaton is in state q and reads
‘a’ then it can go to any one of the states p1, . . . , pr. δ

is extended as δ̂ to K × Σ∗ as follows:

δ̂(q, ε) = {q} for all q in K.

Introduction to Formal Languages, Automata and Computability – p.14/51

contd

If P is a subset of K

δ(P, a) =
⋃

p∈P

δ(p, a)

δ̂(q, xa) = δ(δ̂(q, x), a)

δ̂(P, x) =
⋃

p∈P

δ̂(p, x)

Since δ(q, a) and δ̂(q, a) are equal for a ∈ Σ, we can
use the same symbol δ for δ̂ also.
The set of strings accepted by the automaton is denoted
by T (M).

Introduction to Formal Languages, Automata and Computability – p.15/51

contd

T (M) = {w/w ∈ T ∗, δ(q0, w) contains a state from F}

The automaton can be represented by a state table
also. For example the state diagram given in the figure
can be represented as the state table given below

q
2

a

{q ,q }
0 1 φ

b

φ

φ

{q ,q }
0 1
φ

q

q
1

0

Introduction to Formal Languages, Automata and Computability – p.16/51

contd

Example The state diagram of an NFSA which
accepts binary strings which have at least one pair
‘00’ or one pair ‘11’ is

q
1 q

2
0 0q

0

0,1 0,1

q

q

3

4

1

1

0,1

Introduction to Formal Languages, Automata and Computability – p.17/51

contd

Theorem If L is accepted by a NFSA then L is accepted by a DFSA.
Let L be accepted by a NFSA M = (K,Σ, δ, q0, F). Then we
construct a DFSA M = (K ′,Σ′, δ′, q′

0
, F ′) as follows: K ′ = P(K),

power set of K. Corresponding to each subset of K, we have a state in
K ′. q′

0
corresponds to the subset containing q0 alone. F ′ consists of

states corresponding to subsets having at least one state from F . We
define δ′ as follows:

δ′([q1, . . . , qk], a) = [r1, r2, . . . , rs] if and only if

δ({q1, . . . , qk}, a) = {r1, r2, . . . , rs}.

We show that T (M) = T (M ′).

Introduction to Formal Languages, Automata and Computability – p.18/51

contd

We prove this by induction on the length of the string.
We show that
δ′(q′0, x) = [p1, . . . , pr]
if and only if δ(q0, x) = {p1, . . . , pr}
Basis
|x| = 0 i.e., x = ε
δ′(q′0, ε) = q′0 = [q0]
δ(q0, ε) = {q0}
Induction
Assume that the result is true for strings x of length
upto m. We have to prove for string of length m + 1.
By induction hypothesis

Introduction to Formal Languages, Automata and Computability – p.19/51

contd

δ′(q′0, x) = [p1, . . . , pr]
if and only if δ(q0, x) = {p1, . . . , pr}.
δ′(q′0, xa) = δ′([p1, . . . , pr], a),
δ(q0, xa) =

⋃

p∈P

δ(p, a),

where P = {p1, . . . , pr}.
Suppose

⋃

p∈P

δ(p, a) = {s1, . . . , sm}

δ({p1, . . . , pr}, a) = {s1, . . . , sm}.
By our construction
δ′([p1, . . . , pr], a) = [s1, . . . , sm] and hence
δ′(q′0, xa) = δ′([p1, . . . , pr], a) = [s1, . . . , sm].

Introduction to Formal Languages, Automata and Computability – p.20/51

contd

In M ′, any state representing a subset having a state
from F is in F ′.
So if a string w is accepted in M , there is a sequence
of states which takes M to a final state f and M ′ sim-
ulating M will be in a state representing a subset con-
taining f . Thus L(M) = L(M ′).

Introduction to Formal Languages, Automata and Computability – p.21/51

contd

Example Let us construct the DFSA for the NFSA
given by the table in previous figure. We construct the
table for DFSA.

a b

→ [q0] [q0, q1] [φ]

[q0, q1] [q0, q1] [q1, q2]

[q1, q2] [φ] [q1, q2]

[φ] [φ] [φ]

δ′([q0, q1], a) = [δ(q0, a) ∪ δ(q1, a)] (1)
= [{q0, q1} ∪ φ] (2)
= [q0, q1] (3)

Introduction to Formal Languages, Automata and Computability – p.22/51

contd

δ′([q0, q1], b) = [δ(q0, b) ∪ δ(q1, b)] (4)
= [φ ∪ {q1, q2}] (5)
= [q1, q2] (6)

The state diagram is given

[q]0 [q ,q]
1 2

[q ,q]
0 1

[φ]

a b

a,b

ab

a b

Introduction to Formal Languages, Automata and Computability – p.23/51

Nondeterministic Finite State Au-
tomaton with ε-transitions

q qq

a b

0 1 2
q

3b

c d

Definition An NFSA with ε-transition is a 5-tuple
M = (K, Σ, δ, q0, F). where K, Σ, δ, q0, F are as
defined for NFSA and δ is a mapping from
K × (Σ ∪ {ε}) into finite subsets of K. δ can be
extended as δ̂ to K × Σ∗ as follows. First we define
the ε-closure of a state q. It is the set of states which
can be reached from q by reading ε only. Of course,
ε-closure of a state includes itself.
δ̂(q, ε) = ε-closure(q).

Introduction to Formal Languages, Automata and Computability – p.24/51

contd

For w in Σ∗ and a in Σ, δ̂(q, wa) = ε-closure(P), where
P = {p| for some r in δ̂(q, w), p is in δ(r, a)}

Extending δ and δ̂ to a set of states, we get
δ(Q, a) =

⋃
q in Q δ(q, a)

δ(Q,w) =
⋃

q in Q δ(q, w)

The language accepted is defined as

T (M) = {w|δ̂(q, w) contains a state in F}.

Theorem Let L be accepted by a NFSA with ε-moves. Then L can be
accepted by a NFSA without ε-moves.
Let L be accepted by a NFSA with ε-moves

M = (K,Σ, δ, q0, F). Then we construct a NFSA

Introduction to Formal Languages, Automata and Computability – p.25/51

contd

M ′ = (K,Σ, δ′, q0, F
′) without ε-moves for accepting L as follows.

F ′ = F ∪ {q0} if ε-closure of q0 contains a state from F.

= F otherwise.

δ′(q, a) = δ̂(q, a).
We should show T (M) = T (M ′).

We wish to show by induction on the length of the string x accepted

that δ′(q0, x) = δ̂(q0, x). We start the basis with |x| = 1 because for

|x| = 0, i.e., x = ε this may not hold. We may have δ′(q0, ε) = {q0}

and δ̂(q0, ε) = ε-closure of q0 which may include other states.

Introduction to Formal Languages, Automata and Computability – p.26/51

contd

Basis
|x| = 1. Then x is a symbol of Σ say a, and
δ′(q0, a) = δ̂(q0, a) by our definition of δ′.
Induction
|x| > 1. Then x = ya for some y ∈ Σ∗ and a ∈ Σ.
Then δ′(q0, ya) = δ′(δ′(q0, y), a).
By the inductive hypothesis δ′(q0, y) = δ̂(q0, y).
Let δ̂(q0, y) = P .

Introduction to Formal Languages, Automata and Computability – p.27/51

contd

δ′(P, a) = ∪
p∈P

δ′(p, a) = ∪
p∈P

δ̂(p, a)

∪
p∈P

δ̂(p, a) = δ̂(q0, ya)

Therefore δ′(q0, ya) = δ̂(q0, ya)

It should be noted that δ′(q0, x) contains a state in F ′ if
and only if δ̂(q0, x) contains a state in F .

Introduction to Formal Languages, Automata and Computability – p.28/51

Example

Consider the ε-NFSA of previous example. By our
construction we get the NFSA without ε-moves given
in the following figure

q qq

a b

0 1 2
q

3

c d

a b c

b

b

b

d

b

Introduction to Formal Languages, Automata and Computability – p.29/51

contd

ε-closure of (q0) = {q0, q1}
ε-closure of (q1) = {q1}
ε-closure of (q2) = {q2, q3}
ε-closure of (q3) = {q3}
It is not difficult to see that the language accepted by
the above NFSA = {anbmcpdq/m ≥ 1, n, p, q ≥ 0}.

Introduction to Formal Languages, Automata and Computability – p.30/51

Regular Expressions

Definition Let Σ be an alphabet. For each a in Σ, a is
a regular expression representing the regular set {a}.
φ is a regular expression representing the empty set. ε
is a regular expression representing the set {ε}. If r1

and r2 are regular expressions representing the regular
sets R1 and R2 respectively, then r1 + r2 is a regular
expression representing R1 ∪ R2. r1r2 is a regular
expression representing R1R2. r∗1 is a regular
expression representing R∗

1. Any expression obtained
from φ, ε, a(a ∈ Σ) using the above operations and
parentheses where required is a regular expression.
Example (ab)∗abcd represent the regular set

{(ab)ncd/n ≥ 1}
Introduction to Formal Languages, Automata and Computability – p.31/51

contd

Theorem If r is a regular expression representing a
regular set, we can construct an NFSA with ε-moves
to accept r.
r is obtained from a, (a ∈ Σ), ε, φ by finite number of
applications of +, . and ∗ (. is usually left out).
For ε, φ, a we can construct NFSA with ε-moves are.

is acceptedq
0 {ε}

q
0

q
0

q
f

q
f is accepted

a is accepted

φ

a

Introduction to Formal Languages, Automata and Computability – p.32/51

contd

Let r1 represent the regular set R1 and R1 is accepted
by the NFSA M1 with ε-transitions.

M1 q
01

q
f1

Without loss of generality we can assume that each
such NFSA with ε-moves has only one final state.
R2 is similarly accepted by an NFSA M2 with
ε-transition.

M2 q
02

q
f2

Introduction to Formal Languages, Automata and Computability – p.33/51

contd

Now we can easily see that R1 ∪ R2 (represented by
r1 + r2) is accepted by the NFSA given in next figure

M2

M1

q
02

q
f2

q
01

q
f1

q
f

q
0

Introduction to Formal Languages, Automata and Computability – p.34/51

contd

For this NFSA q0 is the start state and qf is the final
state.
R1R2 represented by r1r2 is accepted by the NFSA
with ε-moves given as

1M M2

q
01

q
f1

q
02

q
f2

For this NFSA with ε-moves q01 is the initial state and
qf2is the final state.
R∗

1 = R0
1 ∪ R1

1 ∪ R2
1 ∪ · · · ∪ Rk

1 ∪ . . .

R0
1 = {ε} and R′

1 = R1. Introduction to Formal Languages, Automata and Computability – p.35/51

contd

R∗
1

represented by r∗
1

is accepted by the NFSA with ε-moves given as

q
0

q
01

q
f1 q

f

For this NFSA with ε-moves q0 is the initial state and qf is the final

state. It can be seen that R∗
1

contains strings of the form x1, x2, . . . , xk

each xi ∈ R1. To accept
Introduction to Formal Languages, Automata and Computability – p.36/51

contd

this string, the control goes from q0 to q01 and then
after reading x1 and reaching qf1, it goes to q01, by an
ε-transition. From q01, it again reads x2 and goes to
qf1. This can be repeated a number (k) of times and
finally the control goes to qf from qf1 by an
ε-transition. R0

1 = {ε} is accepted by going to qf from
q0 by an ε-transition.
Thus we have seen that given a regular expression one
can construct an equivalent NFSA with ε-transitions.

Regular
expression

DFSANFSA with
−transitions

NFSA without
−transitions

Introduction to Formal Languages, Automata and Computability – p.37/51

Example

Consider a regular expression aa∗bb∗.
a and b are accepted by NFSA with ε-moves given in
the following figure

q q
43 b

q q
21 a

Introduction to Formal Languages, Automata and Computability – p.38/51

contd

aa∗bb∗ will be accepted by NFSA with ε-moves given
in next figure.

q
6

q q
4

q
73

q
2 5

qq
1

q
11

q
21

q
31

q
41

q
8a

a

b

b

But we have already seen that a simple NFSA can be
drawn easily for this as in next figure.

q qq

a b

0 1 2ba

Introduction to Formal Languages, Automata and Computability – p.39/51

contd

Definition Let L ⊆ Σ∗ be a language and x be a string
in Σ∗. Then the derivative of L with respect to x is
defined as

Lx = {y ∈ Σ∗/xy ∈ L}.

It is some times denoted as ∂xL.
Theorem If L is a regular set Lx is regular for any x.
Consider a DFSA accepting L. Let this FSA be
M = (K, Σ, δ, q0, F). Start from q0 and read x to go
to state qx ∈ K.
Then M ′ = (K, Σ, δ, qx, F) accepts Lx . This can be
seen easily as below.

Introduction to Formal Languages, Automata and Computability – p.40/51

contd

δ(q0, x) = qx,
δ(q0, xy) ∈ F ⇔ xy ∈ L,
δ(q0, xy) = δ(qx, y),
δ(qx, y) ∈ F ⇔ y ∈ Lx,
∴ M ′ accepts Lx.
lemma Let Σ be an alphabet. The equation X = AX∪

B where A,B ⊆ Σ∗ has a unique solution A∗B if ε /∈

A.

Introduction to Formal Languages, Automata and Computability – p.41/51

contd

Let

X = AX ∪ B

= A(AX ∪ B) ∪ B

= A2X ∪ AB ∪ B

= A2(AX ∪ B) ∪ AB ∪ B

= A3X ∪ A2B ∪ AB ∪ B
...

= An+1X ∪ AnB ∪ An−1B ∪ · · · ∪ AB ∪ B(7)

Since ε /∈ A, any string in Ak will have minimum
length k.
To show X = A∗B. Introduction to Formal Languages, Automata and Computability – p.42/51

contd

Let w ∈ X and |w| = n. We have

X = An+1X ∪ AnB ∪ · · · ∪ AB ∪ B (8)
Since any string in An+1X will have minimum length
n + 1, w will belong to one of AkB, k ≤ n. Hence
w ∈ A∗B. On the other hand let w ∈ A∗B. To prove
w ∈ X . Since |w| = n, w ∈ AkB for some k ≤ n.
Therefore from (8) w ∈ X .
Hence we find that the unique solution for
X = AX + B is X = A∗B.
Note If ε ∈ A, the solution will not be unique. Any
A∗C, where C ⊇ B, will be a solution.

Introduction to Formal Languages, Automata and Computability – p.43/51

contd

Next we give an algorithm to find the regular
expression corresponding to a DFSA.
Algorithm
Let M = (K, Σ, δ, q0, F) be the DFSA.
Σ = {a1, a2, . . . , ak}, K = {q0, q1, . . . , qn−1}.
Step 1 Write an equation for each state in K.
q = a1qi1 + a2qi2 + · · · + akqik

if q is not a final state and δ(q, aj) = qij 1 ≤ j ≤ k.
q = a1qi1 + a2qi2 + · · · + akqik + λ
if q is a final state and δ(q, aj) = qij 1 ≤ j ≤ k.
Step 2 Take the n equations with n variables qi,
1 ≤ i ≤ n, and solve for q0 using the above lemma
and substitution.

Introduction to Formal Languages, Automata and Computability – p.44/51

contd

Step 3 Solution for q0 gives the desired regular
expression. Let us execute this algorithm for the
following DFSA given in the figure.

q
1 q

2

b

a

a

a

b

b

q
0

D

a,b

Introduction to Formal Languages, Automata and Computability – p.45/51

contd

Step 1
q0 = aq1 + bD (9)

q1 = aq1 + bq2 (10)

q2 = aD + bq2 + λ (11)

D = aD + bD (12)
Step 2
Solve for q0. From (12)

D = (a + b)D + φ
Introduction to Formal Languages, Automata and Computability – p.46/51

contd

Using previouus lemma

D = (a + b)∗φ = φ. (13)

Using them we get

q0 = aq1 (14)

q1 = aq1 + bq2 (15)

q2 = bq2 + λ (16)

Note that we have got rid of one equation and one vari-
able. Introduction to Formal Languages, Automata and Computability – p.47/51

contd

In 16 using the lemma we get

q2 = b∗ (17)

Now using 17 and 15

q1 = aq1 + bb∗ (18)

We now have 14 and 18. Again we eliminated one
equation and one variable.
Using the above lemma in (18)

q1 = a∗bb∗ (19)

Introduction to Formal Languages, Automata and Computability – p.48/51

contd

Using 19 in 14
q0 = aa∗bb∗ (20)

This is the regular expression corresponding to the
given FSA.
Next, we see, how we are justified in writing the
equations.
Let q be the state of the DFSA for which we are
writing the equation,

q = a1qi1 + a2qi2 + · · · + akqik + Y. (21)

Y = λ or φ.

Introduction to Formal Languages, Automata and Computability – p.49/51

contd

Let L be the regular set accepted by the given DFSA.
Let x be a string such that starting from q0, after
reading x, state q is reached. Therefore q represents
Lx, the derivative of L with respect to x. From q after
reading aj , the state qij is reached.

Lx = q = a1Lxa1
+ a2Lxa2

+ · · · + akLxak
+ Y. (22)

ajLxaj
represents the set of strings in Lx beginning

with aj. Hence equation (22) represents the partition
of Lx into strings beginning with a1, beginning with
a2 and so on. If Lx contains ε, then Y = ε otherwise
Y = φ.

Introduction to Formal Languages, Automata and Computability – p.50/51

contd

It should be noted that when Lx contains ε, q is a final
state and so x ∈ L. It should also be noted that
considering each state as a variable qj, we have n
equation in n variables. Using the above lemma, and
substitution, each time one equation is removed while
one variable is eliminated. The solution for q0 is
Lε = L. This gives the required regular expression.

Introduction to Formal Languages, Automata and Computability – p.51/51

	Introduction
	contd.
	contd
	contd.
	contd
	contd
	Deterministic Finite State Automaton
	contd
	contd
	contd
	contd
	Nondeterministic Finite State Automaton
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	Nondeterministic Finite State Automaton with $epsilon $-transitions
	contd
	contd
	contd
	contd
	Example
	contd
	Regular Expressions
	contd
	contd
	contd
	contd
	contd
	contd
	Example
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd

