
Principles of Compiler Design
Practice Questions

1. This grammar generates binary numbers with a decimal point:

S → L . L | L
L → L B | B
B → 0 | 1

Design an L-attributed definition to compute S.val, the decimal number value of the input string.
For example, the translation of string 101.101 should be the decimal number 5.625. Draw parse tree
for string 101.101 and show how the rules compute the value.

DO NOT TRANSFORM THE GRAMMAR IN ANY WAY.

2. Assume following grammar for array types:

T → B C
B → int
B → float
C → [num] C1

C → ε

(A) Write rules to compute attributes type (capturing the type expression), and width (capturing the
number of bytes required) of all the grammar symbols. Assume that integer takes 4 bytes and float
takes 8 bytes. You may use both inherited and synthesized attributes. However, make sure that the
attribute equations are put in the right places so that evaluation order of the attribute equations
remain correct.

(B) Make parse tree of the string int[4][5][6] and show the value of attributes at each of the nodes
using the above grammar and the rules developed in part (A). You will not get credit for this part if
the answer to the part (A) is not correct.

3. What is printed by the program shown below, For each of the following parameter passing mechanism:
(a) call-by-value (b) call-by-reference
(c) call-by-name (d) copy-restore

void p(x, y, z) {

y = y + 1;

z = z + x;

printf("p: %d, %d, %d", x, y, z);

return;

}

main() {

int a = 2;

int b = 3;

p(a+b, a, a);

printf("main: %d", a);

}

4. Consider grammar and rules given below for array address translation and generating 3 address code
for array references:

E → E1 + E2 {E.addr = newtemp();
gen(E.addr ’=’ E1.addr ’+’ E2.addr);}

E → E1 * E2 {E.addr = newtemp();
gen(E.addr ’=’ E1.addr ’*’ E2.addr);}

| id {E.addr = id.lexeme; }

| L {E.addr = newtemp();
gen(E.addr ’=’ L.array.basname ’[’ L.addr ’]’); }

L → id [E] {L.array = id.lexeme; L.type = L.array.typeofelement;
L.addr=newtemp();
gen(L.addr ’=’ E.addr ’*’ L.type.width);}

| L1 [E] {L.array = L1.array; L.type = L1.type.typeofelement;
t = newtemp(); L.addr = newtemp();
gen(t ’=’ E.addr ’*’ L.type.width);
gen(L.addr ’=’ L1.addr ’+’ t); }

Function newtemp() returns a new temporary name
L.array.basename means name of the array
L.array.typeofelement means type of the element of the array
L.type.width means width of L.type
Assume size of integer to be 4 bytes, and lower bound of the arrays to be 0

Let A, B and C be 10×5, 5×7, and 10×7 arrays of integers respectively. Let i, j, and k be integers.

Construct an annotated parse tree for the expression C[i][j]+A[i][k]*B[k][j] and show the 3-address
code sequence generated for the expression.

5. This grammar generates binary numbers with an optional negative sign (−) and optional decimal
point:

S → N | − N
N → L . L | L
L → L B | B
B → 0 | 1

(a) Design an L-attributed definition to compute S.val, the decimal number value of the input string.
For example, the translation of 101.101 should be the decimal number 5.625.

(b) Draw parse tree for string −101.101 and annotate the nodes with values computed by the rules.

DO NOT TRANSFORM THE GRAMMAR IN ANY WAY.

2

6. Given below is a grammar for switch statement.

SwitchStmt → switch Expr { Cases }
Cases → Cases Case | Case

Case → case Const : Stmt

We would like to generate 3-address code for switch statements. The nature of the code that we
would like to generate is illustrated below:

switch E { 1. code to evaluate E in t

2. if t <> V1 goto 5

case V1: S1 3. code for S1

case V2: S2 4. goto 9

5. if t <> V2 goto 8

} 6. code for S2

7. goto 9

8. nop

9. ...

Give L-attributed definitions to generate 3-address code for switch statements. Clearly describe all
the attributes that you will be using. Assume that code has already been generated for Expr and
Stmt. Use the familiar functions gen (or emit), backpatch, nextquad etc. You can also use other
functions, but explain what they do.

Note: (i) nop statement is just a placeholder, and can be generated by gen(nop).
(ii) If you can not give L-attributed definition, you can attempt giving a general SDT scheme

for partial marks.

End of Practice Questions

3

